Electrochemical Mechanism of Al Metal–Organic Battery Based on Phenanthrenequinone
Al metal-organic batteries are a perspective high-energy battery technology based on abundant materials. However, the practical energy density of Al metal-organic batteries is strongly dependent on its electrochemical mechanism. Energy density is mostly governed by the nature of the aluminium comple...
Guardado en:
Autores principales: | , , , , , , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
American Association for the Advancement of Science (AAAS)
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/f71399da6a1248fb91b4d6ed846d7061 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:doaj.org-article:f71399da6a1248fb91b4d6ed846d7061 |
---|---|
record_format |
dspace |
spelling |
oai:doaj.org-article:f71399da6a1248fb91b4d6ed846d70612021-11-15T08:22:26ZElectrochemical Mechanism of Al Metal–Organic Battery Based on Phenanthrenequinone2692-764010.34133/2021/9793209https://doaj.org/article/f71399da6a1248fb91b4d6ed846d70612021-01-01T00:00:00Zhttp://dx.doi.org/10.34133/2021/9793209https://doaj.org/toc/2692-7640Al metal-organic batteries are a perspective high-energy battery technology based on abundant materials. However, the practical energy density of Al metal-organic batteries is strongly dependent on its electrochemical mechanism. Energy density is mostly governed by the nature of the aluminium complex ion and utilization of redox activity of the organic group. Although organic cathodes have been used before, detailed study of the electrochemical mechanism is typically not the primary focus. In the present work, electrochemical mechanism of Al metal-phenanthrenequinone battery is investigated with a range of different analytical techniques. Firstly, its capacity retention is optimized through the preparation of insoluble cross-coupled polymer, which exemplifies extremely low capacity fade and long-term cycling stability. Ex situ and operando ATR-IR confirm that reduction of phenanthrenequinone group proceeds through the two-electron reduction of carbonyl groups, which was previously believed to exchange only one-electron, severely limiting cathode capacity. Nature of aluminium complex ion interacting with organic cathode is determined through multiprong approach using SEM-EDS, XPS, and solid-state NMR, which all point to the dominant contribution of AlCl2+ cation. Upon full capacity utilization, Al metal-polyphenanthrenequinone battery utilizing AlCl2+ offers an energy density of more than 200 Wh/kg making it a viable solution for stationary electrical energy storage.Jan BitencUrban KoširAlen VizintinNiklas LindahlAndraž KrajncKlemen PirnatIvan JermanRobert DominkoAmerican Association for the Advancement of Science (AAAS)articleMaterials of engineering and construction. Mechanics of materialsTA401-492Renewable energy sourcesTJ807-830ENEnergy Material Advances, Vol 2021 (2021) |
institution |
DOAJ |
collection |
DOAJ |
language |
EN |
topic |
Materials of engineering and construction. Mechanics of materials TA401-492 Renewable energy sources TJ807-830 |
spellingShingle |
Materials of engineering and construction. Mechanics of materials TA401-492 Renewable energy sources TJ807-830 Jan Bitenc Urban Košir Alen Vizintin Niklas Lindahl Andraž Krajnc Klemen Pirnat Ivan Jerman Robert Dominko Electrochemical Mechanism of Al Metal–Organic Battery Based on Phenanthrenequinone |
description |
Al metal-organic batteries are a perspective high-energy battery technology based on abundant materials. However, the practical energy density of Al metal-organic batteries is strongly dependent on its electrochemical mechanism. Energy density is mostly governed by the nature of the aluminium complex ion and utilization of redox activity of the organic group. Although organic cathodes have been used before, detailed study of the electrochemical mechanism is typically not the primary focus. In the present work, electrochemical mechanism of Al metal-phenanthrenequinone battery is investigated with a range of different analytical techniques. Firstly, its capacity retention is optimized through the preparation of insoluble cross-coupled polymer, which exemplifies extremely low capacity fade and long-term cycling stability. Ex situ and operando ATR-IR confirm that reduction of phenanthrenequinone group proceeds through the two-electron reduction of carbonyl groups, which was previously believed to exchange only one-electron, severely limiting cathode capacity. Nature of aluminium complex ion interacting with organic cathode is determined through multiprong approach using SEM-EDS, XPS, and solid-state NMR, which all point to the dominant contribution of AlCl2+ cation. Upon full capacity utilization, Al metal-polyphenanthrenequinone battery utilizing AlCl2+ offers an energy density of more than 200 Wh/kg making it a viable solution for stationary electrical energy storage. |
format |
article |
author |
Jan Bitenc Urban Košir Alen Vizintin Niklas Lindahl Andraž Krajnc Klemen Pirnat Ivan Jerman Robert Dominko |
author_facet |
Jan Bitenc Urban Košir Alen Vizintin Niklas Lindahl Andraž Krajnc Klemen Pirnat Ivan Jerman Robert Dominko |
author_sort |
Jan Bitenc |
title |
Electrochemical Mechanism of Al Metal–Organic Battery Based on Phenanthrenequinone |
title_short |
Electrochemical Mechanism of Al Metal–Organic Battery Based on Phenanthrenequinone |
title_full |
Electrochemical Mechanism of Al Metal–Organic Battery Based on Phenanthrenequinone |
title_fullStr |
Electrochemical Mechanism of Al Metal–Organic Battery Based on Phenanthrenequinone |
title_full_unstemmed |
Electrochemical Mechanism of Al Metal–Organic Battery Based on Phenanthrenequinone |
title_sort |
electrochemical mechanism of al metal–organic battery based on phenanthrenequinone |
publisher |
American Association for the Advancement of Science (AAAS) |
publishDate |
2021 |
url |
https://doaj.org/article/f71399da6a1248fb91b4d6ed846d7061 |
work_keys_str_mv |
AT janbitenc electrochemicalmechanismofalmetalorganicbatterybasedonphenanthrenequinone AT urbankox0161ir electrochemicalmechanismofalmetalorganicbatterybasedonphenanthrenequinone AT alenvizintin electrochemicalmechanismofalmetalorganicbatterybasedonphenanthrenequinone AT niklaslindahl electrochemicalmechanismofalmetalorganicbatterybasedonphenanthrenequinone AT andrax017ekrajnc electrochemicalmechanismofalmetalorganicbatterybasedonphenanthrenequinone AT klemenpirnat electrochemicalmechanismofalmetalorganicbatterybasedonphenanthrenequinone AT ivanjerman electrochemicalmechanismofalmetalorganicbatterybasedonphenanthrenequinone AT robertdominko electrochemicalmechanismofalmetalorganicbatterybasedonphenanthrenequinone |
_version_ |
1718428531648626688 |