Interaction of hydro-socio-technology-knowledge indicators in integrated water resources management using soft-computing techniques

Various factors affect the development of social, cultural, and economic aspects of societies. One of these factors is the state of water resources. In this study, countries of the world with decreasing renewable water per capita were examined during the period 2005–2017. Specifically, 35, 5, 20, 48...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Masoumeh Zeinali, Sarvin Zamanzad-Ghavidel, Yaser Mehri, Hazi Mohammad Azamathulla
Formato: article
Lenguaje:EN
Publicado: IWA Publishing 2021
Materias:
Acceso en línea:https://doaj.org/article/f71a8391196c45d999090e961d06aaf4
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
Descripción
Sumario:Various factors affect the development of social, cultural, and economic aspects of societies. One of these factors is the state of water resources. In this study, countries of the world with decreasing renewable water per capita were examined during the period 2005–2017. Specifically, 35, 5, 20, 48, 43, and 151 countries were selected from the American, Oceania, European, African, Asian continents, and the world respectively. Further, three hydro-socio-technology-knowledge indicators associated with demographic, technology, and knowledge dimensions were estimated with soft-computing methods (i.e. Group Method of Data Handling (GMDH), Radial Basis Function (RBF), and Regression Trees (R Trees)) for the world's continents). The GMDH model's performance was the best among the other soft-computing methods in estimating the hydro-socio-technology-knowledge indicators for all the world's continents based on statistical criteria (coefficient of determination (R2), root mean square error (RMSE) and mean absolute error (MAE)). The values of RMSE for GMDH models for the ratio of rural to urban population (PRUP), population density (PD), number of internet users (IU) and education index (EI) indicators equaled (0.291, 0.046, 0.127, 0.199), (0.094, 0.023, 0.174, 0.137), (0.237, 0.044, 0.166, 0.225), (0.173, 0.031, 0.126, 0.163), (0.218, 0.058, 0.142, 0.196) and (0.231, 0.049, 0.167, 0.195) for America, Oceania, Europe, Africa, Asia and the world, respectively. The results indicate that there is an interaction between socio-technology-knowledge indicators. Thus, for water resources in all continents and the world, the hydro-socio-technology-knowledge indicators can be used for proper planning and management of water resources.