A Key Agreement Scheme for IoD Deployment Civilian Drone

Drones are of different shapes, sizes, characteristics, and configurations. It can be classified for the purpose of its deployment, either in the civilian or military domain. The earliest usage of drones was totally for military purposes, but manufacturers promptly tested it for civilian fields like...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Saeed Ullah Jan, Irshad Ahmed Abbasi, Fahad Algarni
Formato: article
Lenguaje:EN
Publicado: IEEE 2021
Materias:
UAV
Acceso en línea:https://doaj.org/article/f71ba3bb2d8b46cf95848ac0489aa3c1
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
Descripción
Sumario:Drones are of different shapes, sizes, characteristics, and configurations. It can be classified for the purpose of its deployment, either in the civilian or military domain. The earliest usage of drones was totally for military purposes, but manufacturers promptly tested it for civilian fields like border surveillance, disaster relief, pipeline inspection, and rescue. Drone manufacturing, equipment installation, power supply, multi-rotor system, and embedded sensors are not the pressing issues for researchers of drone technologies. What is required is to utilize a drone for a complex operation and ensure secured data broadcasting among drones with the ground control station via a self-organized, resourceless, and infrastructureless network (Flying Ad Hoc Networks (FANETs)). These operations are no less important in areas like an emergency, search and rescue operations, border surveillance, and physical phenomenon sensing for the end-user. However, it is not without some challenges for the researchers keeping in view the threats these operations are exposed to concerning security issues and challenges. To overcome these challenges, the researchers have to strive towards a secured drone operation by developing a robust and lightweight key agreement protocol for IoD deployment civilian drones. Consequently, the researchers in this study have attempted to design a key agreement scheme for the IoD deployment of civilian drones. The security of the proposed key agreement scheme has been verified by ProVerif2.02 and Real-Or-Random (ROR) model, while its performance scenario has been tackled by considering storage, computation, and communication overheads analysis. In comparing the proposed framework with prior protocols, it has been demonstrated that the scheme is quite efficient and may be recommended for operations in a given IoD environment.