A Key Agreement Scheme for IoD Deployment Civilian Drone
Drones are of different shapes, sizes, characteristics, and configurations. It can be classified for the purpose of its deployment, either in the civilian or military domain. The earliest usage of drones was totally for military purposes, but manufacturers promptly tested it for civilian fields like...
Guardado en:
Autores principales: | , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
IEEE
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/f71ba3bb2d8b46cf95848ac0489aa3c1 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:doaj.org-article:f71ba3bb2d8b46cf95848ac0489aa3c1 |
---|---|
record_format |
dspace |
spelling |
oai:doaj.org-article:f71ba3bb2d8b46cf95848ac0489aa3c12021-11-18T00:04:00ZA Key Agreement Scheme for IoD Deployment Civilian Drone2169-353610.1109/ACCESS.2021.3124510https://doaj.org/article/f71ba3bb2d8b46cf95848ac0489aa3c12021-01-01T00:00:00Zhttps://ieeexplore.ieee.org/document/9597527/https://doaj.org/toc/2169-3536Drones are of different shapes, sizes, characteristics, and configurations. It can be classified for the purpose of its deployment, either in the civilian or military domain. The earliest usage of drones was totally for military purposes, but manufacturers promptly tested it for civilian fields like border surveillance, disaster relief, pipeline inspection, and rescue. Drone manufacturing, equipment installation, power supply, multi-rotor system, and embedded sensors are not the pressing issues for researchers of drone technologies. What is required is to utilize a drone for a complex operation and ensure secured data broadcasting among drones with the ground control station via a self-organized, resourceless, and infrastructureless network (Flying Ad Hoc Networks (FANETs)). These operations are no less important in areas like an emergency, search and rescue operations, border surveillance, and physical phenomenon sensing for the end-user. However, it is not without some challenges for the researchers keeping in view the threats these operations are exposed to concerning security issues and challenges. To overcome these challenges, the researchers have to strive towards a secured drone operation by developing a robust and lightweight key agreement protocol for IoD deployment civilian drones. Consequently, the researchers in this study have attempted to design a key agreement scheme for the IoD deployment of civilian drones. The security of the proposed key agreement scheme has been verified by ProVerif2.02 and Real-Or-Random (ROR) model, while its performance scenario has been tackled by considering storage, computation, and communication overheads analysis. In comparing the proposed framework with prior protocols, it has been demonstrated that the scheme is quite efficient and may be recommended for operations in a given IoD environment.Saeed Ullah JanIrshad Ahmed AbbasiFahad AlgarniIEEEarticleUAVlatencysurveillancecryptographysensorauthenticationElectrical engineering. Electronics. Nuclear engineeringTK1-9971ENIEEE Access, Vol 9, Pp 149311-149321 (2021) |
institution |
DOAJ |
collection |
DOAJ |
language |
EN |
topic |
UAV latency surveillance cryptography sensor authentication Electrical engineering. Electronics. Nuclear engineering TK1-9971 |
spellingShingle |
UAV latency surveillance cryptography sensor authentication Electrical engineering. Electronics. Nuclear engineering TK1-9971 Saeed Ullah Jan Irshad Ahmed Abbasi Fahad Algarni A Key Agreement Scheme for IoD Deployment Civilian Drone |
description |
Drones are of different shapes, sizes, characteristics, and configurations. It can be classified for the purpose of its deployment, either in the civilian or military domain. The earliest usage of drones was totally for military purposes, but manufacturers promptly tested it for civilian fields like border surveillance, disaster relief, pipeline inspection, and rescue. Drone manufacturing, equipment installation, power supply, multi-rotor system, and embedded sensors are not the pressing issues for researchers of drone technologies. What is required is to utilize a drone for a complex operation and ensure secured data broadcasting among drones with the ground control station via a self-organized, resourceless, and infrastructureless network (Flying Ad Hoc Networks (FANETs)). These operations are no less important in areas like an emergency, search and rescue operations, border surveillance, and physical phenomenon sensing for the end-user. However, it is not without some challenges for the researchers keeping in view the threats these operations are exposed to concerning security issues and challenges. To overcome these challenges, the researchers have to strive towards a secured drone operation by developing a robust and lightweight key agreement protocol for IoD deployment civilian drones. Consequently, the researchers in this study have attempted to design a key agreement scheme for the IoD deployment of civilian drones. The security of the proposed key agreement scheme has been verified by ProVerif2.02 and Real-Or-Random (ROR) model, while its performance scenario has been tackled by considering storage, computation, and communication overheads analysis. In comparing the proposed framework with prior protocols, it has been demonstrated that the scheme is quite efficient and may be recommended for operations in a given IoD environment. |
format |
article |
author |
Saeed Ullah Jan Irshad Ahmed Abbasi Fahad Algarni |
author_facet |
Saeed Ullah Jan Irshad Ahmed Abbasi Fahad Algarni |
author_sort |
Saeed Ullah Jan |
title |
A Key Agreement Scheme for IoD Deployment Civilian Drone |
title_short |
A Key Agreement Scheme for IoD Deployment Civilian Drone |
title_full |
A Key Agreement Scheme for IoD Deployment Civilian Drone |
title_fullStr |
A Key Agreement Scheme for IoD Deployment Civilian Drone |
title_full_unstemmed |
A Key Agreement Scheme for IoD Deployment Civilian Drone |
title_sort |
key agreement scheme for iod deployment civilian drone |
publisher |
IEEE |
publishDate |
2021 |
url |
https://doaj.org/article/f71ba3bb2d8b46cf95848ac0489aa3c1 |
work_keys_str_mv |
AT saeedullahjan akeyagreementschemeforioddeploymentciviliandrone AT irshadahmedabbasi akeyagreementschemeforioddeploymentciviliandrone AT fahadalgarni akeyagreementschemeforioddeploymentciviliandrone AT saeedullahjan keyagreementschemeforioddeploymentciviliandrone AT irshadahmedabbasi keyagreementschemeforioddeploymentciviliandrone AT fahadalgarni keyagreementschemeforioddeploymentciviliandrone |
_version_ |
1718425262203338752 |