Machine learning plastic deformation of crystals
Predicting plastic deformation in crystals remains challenging owing to the nonlinear nature of stochastic avalanches involved, which resemble the critical phenomena. Salmenjoki et al. use machine learning to predict plastic deformation and show that it works better for those under large strains.
Guardado en:
Autores principales: | Henri Salmenjoki, Mikko J. Alava, Lasse Laurson |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2018
|
Materias: | |
Acceso en línea: | https://doaj.org/article/f72865053338476bbf305c68bf624ddb |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Effects of precipitates and dislocation loops on the yield stress of irradiated iron
por: Arttu Lehtinen, et al.
Publicado: (2018) -
Modelling aerosol-based exposure to SARS-CoV-2 by an agent based Monte Carlo method: Risk estimates in a shop and bar.
por: Henri Salmenjoki, et al.
Publicado: (2021) -
Evaluation of deformation-induced anisotropy for plastically deformed polycarbonate
por: Sho HIGUCHI, et al.
Publicado: (2021) -
High-temperature annealing of plastic deformation of GaP single crystals in a heterogeneous stress field
por: Jitaru, Raisa, et al.
Publicado: (2013) -
Numerical investigation of the plastic deformation behaviour of graded crushed stone.
por: Ying-Jun Jiang, et al.
Publicado: (2021)