Constructing a visible-light-driven photocatalytic membrane by g-C3N4 quantum dots and TiO2 nanotube array for enhanced water treatment
Abstract Photocatalytic membranes that driven by visible light are highly desired for water treatment. Here g-C3N4 quantum dots (QDs) assembled into TiO2 nanotube array (TNA) membranes were fabricated for the first time as a visible-light-driven g-C3N4/TNA membrane. Benefiting from the synergistic e...
Guardado en:
Autores principales: | , , , , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2017
|
Materias: | |
Acceso en línea: | https://doaj.org/article/f752c03c3ec54fc28498dbd506c53e09 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Sumario: | Abstract Photocatalytic membranes that driven by visible light are highly desired for water treatment. Here g-C3N4 quantum dots (QDs) assembled into TiO2 nanotube array (TNA) membranes were fabricated for the first time as a visible-light-driven g-C3N4/TNA membrane. Benefiting from the synergistic effect of membrane filtration and photocatalysis, more than 60% of rhodamine B could be removed from water under visible light irradiation. Meanwhile, the g-C3N4/TNA membrane presented an enhanced anti-fouling ability during filtering water containing Escherichia coli under visible light irradiation, and a permeate flux of 2 times higher than that of filtration alone was obtained by integrated process. This study offers a promising strategy for the potential application of the visible-light-driven membranes in water treatment. |
---|