Construction and evaluation of two computational models for predicting the incidence of influenza in Nagasaki Prefecture, Japan
Abstract It remains challenging to forecast local, seasonal outbreaks of influenza. The goal of this study was to construct a computational model for predicting influenza incidence. We built two computational models including an Autoregressive Distributed Lag (ARDL) model and a hybrid model integrat...
Guardado en:
Autores principales: | , , , , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2017
|
Materias: | |
Acceso en línea: | https://doaj.org/article/f75423255de144eea84babad8de5ca88 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:doaj.org-article:f75423255de144eea84babad8de5ca88 |
---|---|
record_format |
dspace |
spelling |
oai:doaj.org-article:f75423255de144eea84babad8de5ca882021-12-02T16:07:00ZConstruction and evaluation of two computational models for predicting the incidence of influenza in Nagasaki Prefecture, Japan10.1038/s41598-017-07475-32045-2322https://doaj.org/article/f75423255de144eea84babad8de5ca882017-08-01T00:00:00Zhttps://doi.org/10.1038/s41598-017-07475-3https://doaj.org/toc/2045-2322Abstract It remains challenging to forecast local, seasonal outbreaks of influenza. The goal of this study was to construct a computational model for predicting influenza incidence. We built two computational models including an Autoregressive Distributed Lag (ARDL) model and a hybrid model integrating ARDL with a Generalized Regression Neural Network (GRNN), to assess meteorological factors associated with temporal trends in influenza incidence. The modelling and forecasting performance of these two models were compared using observations collected between 2006 and 2015 in Nagasaki Prefecture, Japan. In both the training and forecasting stages, the hybrid model showed lower error rates, including a lower residual mean square error (RMSE) and mean absolute error (MAE) than the ARDL model. The lag of log-incidence, weekly average barometric pressure, and weekly average of air temperature were 4, 1, and 3, respectively in the ARDL model. The ARDL-GRNN hybrid model can serve as a tool to better understand the characteristics of influenza epidemic, and facilitate their prevention and control.Fei HeZhi-jian HuWen-chang ZhangLin CaiGuo-xi CaiKiyoshi AoyagiNature PortfolioarticleMedicineRScienceQENScientific Reports, Vol 7, Iss 1, Pp 1-9 (2017) |
institution |
DOAJ |
collection |
DOAJ |
language |
EN |
topic |
Medicine R Science Q |
spellingShingle |
Medicine R Science Q Fei He Zhi-jian Hu Wen-chang Zhang Lin Cai Guo-xi Cai Kiyoshi Aoyagi Construction and evaluation of two computational models for predicting the incidence of influenza in Nagasaki Prefecture, Japan |
description |
Abstract It remains challenging to forecast local, seasonal outbreaks of influenza. The goal of this study was to construct a computational model for predicting influenza incidence. We built two computational models including an Autoregressive Distributed Lag (ARDL) model and a hybrid model integrating ARDL with a Generalized Regression Neural Network (GRNN), to assess meteorological factors associated with temporal trends in influenza incidence. The modelling and forecasting performance of these two models were compared using observations collected between 2006 and 2015 in Nagasaki Prefecture, Japan. In both the training and forecasting stages, the hybrid model showed lower error rates, including a lower residual mean square error (RMSE) and mean absolute error (MAE) than the ARDL model. The lag of log-incidence, weekly average barometric pressure, and weekly average of air temperature were 4, 1, and 3, respectively in the ARDL model. The ARDL-GRNN hybrid model can serve as a tool to better understand the characteristics of influenza epidemic, and facilitate their prevention and control. |
format |
article |
author |
Fei He Zhi-jian Hu Wen-chang Zhang Lin Cai Guo-xi Cai Kiyoshi Aoyagi |
author_facet |
Fei He Zhi-jian Hu Wen-chang Zhang Lin Cai Guo-xi Cai Kiyoshi Aoyagi |
author_sort |
Fei He |
title |
Construction and evaluation of two computational models for predicting the incidence of influenza in Nagasaki Prefecture, Japan |
title_short |
Construction and evaluation of two computational models for predicting the incidence of influenza in Nagasaki Prefecture, Japan |
title_full |
Construction and evaluation of two computational models for predicting the incidence of influenza in Nagasaki Prefecture, Japan |
title_fullStr |
Construction and evaluation of two computational models for predicting the incidence of influenza in Nagasaki Prefecture, Japan |
title_full_unstemmed |
Construction and evaluation of two computational models for predicting the incidence of influenza in Nagasaki Prefecture, Japan |
title_sort |
construction and evaluation of two computational models for predicting the incidence of influenza in nagasaki prefecture, japan |
publisher |
Nature Portfolio |
publishDate |
2017 |
url |
https://doaj.org/article/f75423255de144eea84babad8de5ca88 |
work_keys_str_mv |
AT feihe constructionandevaluationoftwocomputationalmodelsforpredictingtheincidenceofinfluenzainnagasakiprefecturejapan AT zhijianhu constructionandevaluationoftwocomputationalmodelsforpredictingtheincidenceofinfluenzainnagasakiprefecturejapan AT wenchangzhang constructionandevaluationoftwocomputationalmodelsforpredictingtheincidenceofinfluenzainnagasakiprefecturejapan AT lincai constructionandevaluationoftwocomputationalmodelsforpredictingtheincidenceofinfluenzainnagasakiprefecturejapan AT guoxicai constructionandevaluationoftwocomputationalmodelsforpredictingtheincidenceofinfluenzainnagasakiprefecturejapan AT kiyoshiaoyagi constructionandevaluationoftwocomputationalmodelsforpredictingtheincidenceofinfluenzainnagasakiprefecturejapan |
_version_ |
1718384816767893504 |