Evaluation of multi-hazard map produced using MaxEnt machine learning technique
Abstract Natural hazards are diverse and uneven in time and space, therefore, understanding its complexity is key to save human lives and conserve natural ecosystems. Reducing the outputs obtained after each modelling analysis is key to present the results for stakeholders, land managers and policym...
Enregistré dans:
Auteurs principaux: | Narges Javidan, Ataollah Kavian, Hamid Reza Pourghasemi, Christian Conoscenti, Zeinab Jafarian, Jesús Rodrigo-Comino |
---|---|
Format: | article |
Langue: | EN |
Publié: |
Nature Portfolio
2021
|
Sujets: | |
Accès en ligne: | https://doaj.org/article/f755625f07cb4112a94ad5bd9b123e36 |
Tags: |
Ajouter un tag
Pas de tags, Soyez le premier à ajouter un tag!
|
Documents similaires
-
Habitat protection and planning for three Ephedra using the MaxEnt and Marxan models
par: Ping He, et autres
Publié: (2021) -
Prediction of Potentially Suitable Distributions of Codonopsis pilosula in China Based on an Optimized MaxEnt Model
par: Huyong Yan, et autres
Publié: (2021) -
Mapping habitat suitability for the Eastern Black Rail throughout its Atlantic coastal range using maximum entropy (MaxEnt)
par: Amberly A. Neice, et autres
Publié: (2021) -
Assessing and mapping multi-hazard risk susceptibility using a machine learning technique
par: Hamid Reza Pourghasemi, et autres
Publié: (2020) -
Predicting the Habitat Suitability of <i>Melaleuca cajuputi</i> Based on the MaxEnt Species Distribution Model
par: Nor Zafirah Ab Lah, et autres
Publié: (2021)