Bioinformatics-based prediction of conformational epitopes for Enterovirus A71 and Coxsackievirus A16
Abstract Enterovirus A71 (EV-A71), Coxsackievirus A16 (CV-A16) and CV-A10 are the major causative agents of hand, foot and mouth disease (HFMD). The conformational epitopes play a vital role in monitoring the antigenic evolution, predicting dominant strains and preparing vaccines. In this study, we...
Guardado en:
Autores principales: | , , , , , , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/f76b893e8a424f4ab947e47644149111 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:doaj.org-article:f76b893e8a424f4ab947e47644149111 |
---|---|
record_format |
dspace |
spelling |
oai:doaj.org-article:f76b893e8a424f4ab947e476441491112021-12-02T13:19:31ZBioinformatics-based prediction of conformational epitopes for Enterovirus A71 and Coxsackievirus A1610.1038/s41598-021-84891-62045-2322https://doaj.org/article/f76b893e8a424f4ab947e476441491112021-03-01T00:00:00Zhttps://doi.org/10.1038/s41598-021-84891-6https://doaj.org/toc/2045-2322Abstract Enterovirus A71 (EV-A71), Coxsackievirus A16 (CV-A16) and CV-A10 are the major causative agents of hand, foot and mouth disease (HFMD). The conformational epitopes play a vital role in monitoring the antigenic evolution, predicting dominant strains and preparing vaccines. In this study, we employed a Bioinformatics-based algorithm to predict the conformational epitopes of EV-A71 and CV-A16 and compared with that of CV-A10. Prediction results revealed that the distribution patterns of conformational epitopes of EV-A71 and CV-A16 were similar to that of CV-A10 and their epitopes likewise consisted of three sites: site 1 (on the “north rim” of the canyon around the fivefold vertex), site 2 (on the “puff”) and site 3 (one part was in the “knob” and the other was near the threefold vertex). The reported epitopes highly overlapped with our predicted epitopes indicating the predicted results were reliable. These data suggested that three-site distribution pattern may be the basic distribution role of epitopes on the enteroviruses capsids. Our prediction results of EV-A71 and CV-A16 can provide essential information for monitoring the antigenic evolution of enterovirus.Liping WangMiao ZhuYulu FangHao RongLiuying GaoQi LiaoLina ZhangChangzheng DongNature PortfolioarticleMedicineRScienceQENScientific Reports, Vol 11, Iss 1, Pp 1-13 (2021) |
institution |
DOAJ |
collection |
DOAJ |
language |
EN |
topic |
Medicine R Science Q |
spellingShingle |
Medicine R Science Q Liping Wang Miao Zhu Yulu Fang Hao Rong Liuying Gao Qi Liao Lina Zhang Changzheng Dong Bioinformatics-based prediction of conformational epitopes for Enterovirus A71 and Coxsackievirus A16 |
description |
Abstract Enterovirus A71 (EV-A71), Coxsackievirus A16 (CV-A16) and CV-A10 are the major causative agents of hand, foot and mouth disease (HFMD). The conformational epitopes play a vital role in monitoring the antigenic evolution, predicting dominant strains and preparing vaccines. In this study, we employed a Bioinformatics-based algorithm to predict the conformational epitopes of EV-A71 and CV-A16 and compared with that of CV-A10. Prediction results revealed that the distribution patterns of conformational epitopes of EV-A71 and CV-A16 were similar to that of CV-A10 and their epitopes likewise consisted of three sites: site 1 (on the “north rim” of the canyon around the fivefold vertex), site 2 (on the “puff”) and site 3 (one part was in the “knob” and the other was near the threefold vertex). The reported epitopes highly overlapped with our predicted epitopes indicating the predicted results were reliable. These data suggested that three-site distribution pattern may be the basic distribution role of epitopes on the enteroviruses capsids. Our prediction results of EV-A71 and CV-A16 can provide essential information for monitoring the antigenic evolution of enterovirus. |
format |
article |
author |
Liping Wang Miao Zhu Yulu Fang Hao Rong Liuying Gao Qi Liao Lina Zhang Changzheng Dong |
author_facet |
Liping Wang Miao Zhu Yulu Fang Hao Rong Liuying Gao Qi Liao Lina Zhang Changzheng Dong |
author_sort |
Liping Wang |
title |
Bioinformatics-based prediction of conformational epitopes for Enterovirus A71 and Coxsackievirus A16 |
title_short |
Bioinformatics-based prediction of conformational epitopes for Enterovirus A71 and Coxsackievirus A16 |
title_full |
Bioinformatics-based prediction of conformational epitopes for Enterovirus A71 and Coxsackievirus A16 |
title_fullStr |
Bioinformatics-based prediction of conformational epitopes for Enterovirus A71 and Coxsackievirus A16 |
title_full_unstemmed |
Bioinformatics-based prediction of conformational epitopes for Enterovirus A71 and Coxsackievirus A16 |
title_sort |
bioinformatics-based prediction of conformational epitopes for enterovirus a71 and coxsackievirus a16 |
publisher |
Nature Portfolio |
publishDate |
2021 |
url |
https://doaj.org/article/f76b893e8a424f4ab947e47644149111 |
work_keys_str_mv |
AT lipingwang bioinformaticsbasedpredictionofconformationalepitopesforenterovirusa71andcoxsackievirusa16 AT miaozhu bioinformaticsbasedpredictionofconformationalepitopesforenterovirusa71andcoxsackievirusa16 AT yulufang bioinformaticsbasedpredictionofconformationalepitopesforenterovirusa71andcoxsackievirusa16 AT haorong bioinformaticsbasedpredictionofconformationalepitopesforenterovirusa71andcoxsackievirusa16 AT liuyinggao bioinformaticsbasedpredictionofconformationalepitopesforenterovirusa71andcoxsackievirusa16 AT qiliao bioinformaticsbasedpredictionofconformationalepitopesforenterovirusa71andcoxsackievirusa16 AT linazhang bioinformaticsbasedpredictionofconformationalepitopesforenterovirusa71andcoxsackievirusa16 AT changzhengdong bioinformaticsbasedpredictionofconformationalepitopesforenterovirusa71andcoxsackievirusa16 |
_version_ |
1718393307742076928 |