Visual analysis of density and velocity profiles in dense 3D granular gases
Abstract Granular multiparticle ensembles are of interest from fundamental statistical viewpoints as well as for the understanding of collective processes in industry and in nature. Extraction of physical data from optical observations of three-dimensional (3D) granular ensembles poses considerable...
Guardado en:
Autores principales: | , , , , , , , , , , , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/f76c4ee259184357aa1aa85648ed9f02 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:doaj.org-article:f76c4ee259184357aa1aa85648ed9f02 |
---|---|
record_format |
dspace |
spelling |
oai:doaj.org-article:f76c4ee259184357aa1aa85648ed9f022021-12-02T16:49:37ZVisual analysis of density and velocity profiles in dense 3D granular gases10.1038/s41598-021-89949-z2045-2322https://doaj.org/article/f76c4ee259184357aa1aa85648ed9f022021-05-01T00:00:00Zhttps://doi.org/10.1038/s41598-021-89949-zhttps://doaj.org/toc/2045-2322Abstract Granular multiparticle ensembles are of interest from fundamental statistical viewpoints as well as for the understanding of collective processes in industry and in nature. Extraction of physical data from optical observations of three-dimensional (3D) granular ensembles poses considerable problems. Particle-based tracking is possible only at low volume fractions, not in clusters. We apply shadow-based and feature-tracking methods to analyze the dynamics of granular gases in a container with vibrating side walls under microgravity. In order to validate the reliability of these optical analysis methods, we perform numerical simulations of ensembles similar to the experiment. The simulation output is graphically rendered to mimic the experimentally obtained images. We validate the output of the optical analysis methods on the basis of this ground truth information. This approach provides insight in two interconnected problems: the confirmation of the accuracy of the simulations and the test of the applicability of the visual analysis. The proposed approach can be used for further investigations of dynamical properties of such media, including the granular Leidenfrost effect, granular cooling, and gas-clustering transitions.Dmitry PuzyrevDavid FischerKirsten HarthTorsten TrittelRaúl Cruz HidalgoEric FalconMartial NoirhommeEric OpsomerNicolas VandewalleYves GarrabosCarole LecoutreFabien PalenciaRalf StannariusNature PortfolioarticleMedicineRScienceQENScientific Reports, Vol 11, Iss 1, Pp 1-12 (2021) |
institution |
DOAJ |
collection |
DOAJ |
language |
EN |
topic |
Medicine R Science Q |
spellingShingle |
Medicine R Science Q Dmitry Puzyrev David Fischer Kirsten Harth Torsten Trittel Raúl Cruz Hidalgo Eric Falcon Martial Noirhomme Eric Opsomer Nicolas Vandewalle Yves Garrabos Carole Lecoutre Fabien Palencia Ralf Stannarius Visual analysis of density and velocity profiles in dense 3D granular gases |
description |
Abstract Granular multiparticle ensembles are of interest from fundamental statistical viewpoints as well as for the understanding of collective processes in industry and in nature. Extraction of physical data from optical observations of three-dimensional (3D) granular ensembles poses considerable problems. Particle-based tracking is possible only at low volume fractions, not in clusters. We apply shadow-based and feature-tracking methods to analyze the dynamics of granular gases in a container with vibrating side walls under microgravity. In order to validate the reliability of these optical analysis methods, we perform numerical simulations of ensembles similar to the experiment. The simulation output is graphically rendered to mimic the experimentally obtained images. We validate the output of the optical analysis methods on the basis of this ground truth information. This approach provides insight in two interconnected problems: the confirmation of the accuracy of the simulations and the test of the applicability of the visual analysis. The proposed approach can be used for further investigations of dynamical properties of such media, including the granular Leidenfrost effect, granular cooling, and gas-clustering transitions. |
format |
article |
author |
Dmitry Puzyrev David Fischer Kirsten Harth Torsten Trittel Raúl Cruz Hidalgo Eric Falcon Martial Noirhomme Eric Opsomer Nicolas Vandewalle Yves Garrabos Carole Lecoutre Fabien Palencia Ralf Stannarius |
author_facet |
Dmitry Puzyrev David Fischer Kirsten Harth Torsten Trittel Raúl Cruz Hidalgo Eric Falcon Martial Noirhomme Eric Opsomer Nicolas Vandewalle Yves Garrabos Carole Lecoutre Fabien Palencia Ralf Stannarius |
author_sort |
Dmitry Puzyrev |
title |
Visual analysis of density and velocity profiles in dense 3D granular gases |
title_short |
Visual analysis of density and velocity profiles in dense 3D granular gases |
title_full |
Visual analysis of density and velocity profiles in dense 3D granular gases |
title_fullStr |
Visual analysis of density and velocity profiles in dense 3D granular gases |
title_full_unstemmed |
Visual analysis of density and velocity profiles in dense 3D granular gases |
title_sort |
visual analysis of density and velocity profiles in dense 3d granular gases |
publisher |
Nature Portfolio |
publishDate |
2021 |
url |
https://doaj.org/article/f76c4ee259184357aa1aa85648ed9f02 |
work_keys_str_mv |
AT dmitrypuzyrev visualanalysisofdensityandvelocityprofilesindense3dgranulargases AT davidfischer visualanalysisofdensityandvelocityprofilesindense3dgranulargases AT kirstenharth visualanalysisofdensityandvelocityprofilesindense3dgranulargases AT torstentrittel visualanalysisofdensityandvelocityprofilesindense3dgranulargases AT raulcruzhidalgo visualanalysisofdensityandvelocityprofilesindense3dgranulargases AT ericfalcon visualanalysisofdensityandvelocityprofilesindense3dgranulargases AT martialnoirhomme visualanalysisofdensityandvelocityprofilesindense3dgranulargases AT ericopsomer visualanalysisofdensityandvelocityprofilesindense3dgranulargases AT nicolasvandewalle visualanalysisofdensityandvelocityprofilesindense3dgranulargases AT yvesgarrabos visualanalysisofdensityandvelocityprofilesindense3dgranulargases AT carolelecoutre visualanalysisofdensityandvelocityprofilesindense3dgranulargases AT fabienpalencia visualanalysisofdensityandvelocityprofilesindense3dgranulargases AT ralfstannarius visualanalysisofdensityandvelocityprofilesindense3dgranulargases |
_version_ |
1718383313305993216 |