Comparison of machine learning methods for estimating case fatality ratios: An Ebola outbreak simulation study.
<h4>Background</h4>Machine learning (ML) algorithms are now increasingly used in infectious disease epidemiology. Epidemiologists should understand how ML algorithms behave within the context of outbreak data where missingness of data is almost ubiquitous.<h4>Methods</h4>Usin...
Guardado en:
Autores principales: | Alpha Forna, Ilaria Dorigatti, Pierre Nouvellet, Christl A Donnelly |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Public Library of Science (PLoS)
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/f76e19b1b9e84c1795c43352c11e6790 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Modelling the influence of naturally acquired immunity from subclinical infection on outbreak dynamics and persistence of rabies in domestic dogs.
por: Susannah Gold, et al.
Publicado: (2021) -
Risk of yellow fever virus importation into the United States from Brazil, outbreak years 2016–2017 and 2017–2018
por: Ilaria Dorigatti, et al.
Publicado: (2019) -
The 2021 Ebola virus outbreak in Guinea: Mistrust and the shortcomings of outbreak surveillance.
por: Manuel Raab, et al.
Publicado: (2021) -
Novel Use of Capture-Recapture Methods to Estimate Completeness of Contact Tracing during an Ebola Outbreak, Democratic Republic of the Congo, 2018–2020
por: Jonathan A. Polonsky, et al.
Publicado: (2021) -
Human fatal zaire ebola virus infection is associated with an aberrant innate immunity and with massive lymphocyte apoptosis.
por: Nadia Wauquier, et al.
Publicado: (2010)