Comparison of machine learning methods for estimating case fatality ratios: An Ebola outbreak simulation study.
<h4>Background</h4>Machine learning (ML) algorithms are now increasingly used in infectious disease epidemiology. Epidemiologists should understand how ML algorithms behave within the context of outbreak data where missingness of data is almost ubiquitous.<h4>Methods</h4>Usin...
Enregistré dans:
Auteurs principaux: | Alpha Forna, Ilaria Dorigatti, Pierre Nouvellet, Christl A Donnelly |
---|---|
Format: | article |
Langue: | EN |
Publié: |
Public Library of Science (PLoS)
2021
|
Sujets: | |
Accès en ligne: | https://doaj.org/article/f76e19b1b9e84c1795c43352c11e6790 |
Tags: |
Ajouter un tag
Pas de tags, Soyez le premier à ajouter un tag!
|
Documents similaires
-
Modelling the influence of naturally acquired immunity from subclinical infection on outbreak dynamics and persistence of rabies in domestic dogs.
par: Susannah Gold, et autres
Publié: (2021) -
Risk of yellow fever virus importation into the United States from Brazil, outbreak years 2016–2017 and 2017–2018
par: Ilaria Dorigatti, et autres
Publié: (2019) -
The 2021 Ebola virus outbreak in Guinea: Mistrust and the shortcomings of outbreak surveillance.
par: Manuel Raab, et autres
Publié: (2021) -
Novel Use of Capture-Recapture Methods to Estimate Completeness of Contact Tracing during an Ebola Outbreak, Democratic Republic of the Congo, 2018–2020
par: Jonathan A. Polonsky, et autres
Publié: (2021) -
Human fatal zaire ebola virus infection is associated with an aberrant innate immunity and with massive lymphocyte apoptosis.
par: Nadia Wauquier, et autres
Publié: (2010)