Galerkin finite element analysis of magneto two-phase nanofluid flowing in double wavy enclosure comprehending an adiabatic rotating cylinder

Abstract In this work, the finite element method is employed to simulate heat transfer and irreversibilities in a mixed convection two-phase flow through a wavy enclosure filled with water–alumina nanoliquid and contains a rotating solid cylinder in the presence of a uniform magnetic field. Impact o...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Wael Al-Kouz, Bilal Abdel-Illah Bendrer, Abderrahmane Aissa, Ahmad Almuhtady, Wasim Jamshed, Kottakkaran Sooppy Nisar, Abed Mourad, Nawal A. Alshehri, Mohammed Zakarya
Formato: article
Lenguaje:EN
Publicado: Nature Portfolio 2021
Materias:
R
Q
Acceso en línea:https://doaj.org/article/f770174347a14d78ac3f3fd14612aea1
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:f770174347a14d78ac3f3fd14612aea1
record_format dspace
spelling oai:doaj.org-article:f770174347a14d78ac3f3fd14612aea12021-12-02T16:43:38ZGalerkin finite element analysis of magneto two-phase nanofluid flowing in double wavy enclosure comprehending an adiabatic rotating cylinder10.1038/s41598-021-95846-22045-2322https://doaj.org/article/f770174347a14d78ac3f3fd14612aea12021-08-01T00:00:00Zhttps://doi.org/10.1038/s41598-021-95846-2https://doaj.org/toc/2045-2322Abstract In this work, the finite element method is employed to simulate heat transfer and irreversibilities in a mixed convection two-phase flow through a wavy enclosure filled with water–alumina nanoliquid and contains a rotating solid cylinder in the presence of a uniform magnetic field. Impact of the variations of undulations number (0 ≤ N ≤ 5), Ra (103 ≤ Ra ≤ 106), Ha (0 ≤ Ha ≤ 100), and angular rotational velocity (− 500 ≤ Ω ≤ 500) were presented. Isotherms distribution, streamlines and isentropic lines are displayed. The governing equations are verified by using the Galerkin Finite Element Method (GFEM). The Nusselt numbers are calculated and displayed graphically for several parametric studies. The computational calculations were carried out using Buongiorno's non-homogeneous model. To illustrate the studied problem, a thorough discussion of the findings was conducted. The results show the enhacement of the maximum value of the flow function and the heat transfer process by increasing the value of Rayleigh number. Furthermore the irreversibility is primarily governed by the heat transfer component and the increment of the waviness of the active surfaces or the cylinder rotational velocity or hartmann number will suppress the fluid motion and hinders the heat transfer process.Wael Al-KouzBilal Abdel-Illah BendrerAbderrahmane AissaAhmad AlmuhtadyWasim JamshedKottakkaran Sooppy NisarAbed MouradNawal A. AlshehriMohammed ZakaryaNature PortfolioarticleMedicineRScienceQENScientific Reports, Vol 11, Iss 1, Pp 1-15 (2021)
institution DOAJ
collection DOAJ
language EN
topic Medicine
R
Science
Q
spellingShingle Medicine
R
Science
Q
Wael Al-Kouz
Bilal Abdel-Illah Bendrer
Abderrahmane Aissa
Ahmad Almuhtady
Wasim Jamshed
Kottakkaran Sooppy Nisar
Abed Mourad
Nawal A. Alshehri
Mohammed Zakarya
Galerkin finite element analysis of magneto two-phase nanofluid flowing in double wavy enclosure comprehending an adiabatic rotating cylinder
description Abstract In this work, the finite element method is employed to simulate heat transfer and irreversibilities in a mixed convection two-phase flow through a wavy enclosure filled with water–alumina nanoliquid and contains a rotating solid cylinder in the presence of a uniform magnetic field. Impact of the variations of undulations number (0 ≤ N ≤ 5), Ra (103 ≤ Ra ≤ 106), Ha (0 ≤ Ha ≤ 100), and angular rotational velocity (− 500 ≤ Ω ≤ 500) were presented. Isotherms distribution, streamlines and isentropic lines are displayed. The governing equations are verified by using the Galerkin Finite Element Method (GFEM). The Nusselt numbers are calculated and displayed graphically for several parametric studies. The computational calculations were carried out using Buongiorno's non-homogeneous model. To illustrate the studied problem, a thorough discussion of the findings was conducted. The results show the enhacement of the maximum value of the flow function and the heat transfer process by increasing the value of Rayleigh number. Furthermore the irreversibility is primarily governed by the heat transfer component and the increment of the waviness of the active surfaces or the cylinder rotational velocity or hartmann number will suppress the fluid motion and hinders the heat transfer process.
format article
author Wael Al-Kouz
Bilal Abdel-Illah Bendrer
Abderrahmane Aissa
Ahmad Almuhtady
Wasim Jamshed
Kottakkaran Sooppy Nisar
Abed Mourad
Nawal A. Alshehri
Mohammed Zakarya
author_facet Wael Al-Kouz
Bilal Abdel-Illah Bendrer
Abderrahmane Aissa
Ahmad Almuhtady
Wasim Jamshed
Kottakkaran Sooppy Nisar
Abed Mourad
Nawal A. Alshehri
Mohammed Zakarya
author_sort Wael Al-Kouz
title Galerkin finite element analysis of magneto two-phase nanofluid flowing in double wavy enclosure comprehending an adiabatic rotating cylinder
title_short Galerkin finite element analysis of magneto two-phase nanofluid flowing in double wavy enclosure comprehending an adiabatic rotating cylinder
title_full Galerkin finite element analysis of magneto two-phase nanofluid flowing in double wavy enclosure comprehending an adiabatic rotating cylinder
title_fullStr Galerkin finite element analysis of magneto two-phase nanofluid flowing in double wavy enclosure comprehending an adiabatic rotating cylinder
title_full_unstemmed Galerkin finite element analysis of magneto two-phase nanofluid flowing in double wavy enclosure comprehending an adiabatic rotating cylinder
title_sort galerkin finite element analysis of magneto two-phase nanofluid flowing in double wavy enclosure comprehending an adiabatic rotating cylinder
publisher Nature Portfolio
publishDate 2021
url https://doaj.org/article/f770174347a14d78ac3f3fd14612aea1
work_keys_str_mv AT waelalkouz galerkinfiniteelementanalysisofmagnetotwophasenanofluidflowingindoublewavyenclosurecomprehendinganadiabaticrotatingcylinder
AT bilalabdelillahbendrer galerkinfiniteelementanalysisofmagnetotwophasenanofluidflowingindoublewavyenclosurecomprehendinganadiabaticrotatingcylinder
AT abderrahmaneaissa galerkinfiniteelementanalysisofmagnetotwophasenanofluidflowingindoublewavyenclosurecomprehendinganadiabaticrotatingcylinder
AT ahmadalmuhtady galerkinfiniteelementanalysisofmagnetotwophasenanofluidflowingindoublewavyenclosurecomprehendinganadiabaticrotatingcylinder
AT wasimjamshed galerkinfiniteelementanalysisofmagnetotwophasenanofluidflowingindoublewavyenclosurecomprehendinganadiabaticrotatingcylinder
AT kottakkaransooppynisar galerkinfiniteelementanalysisofmagnetotwophasenanofluidflowingindoublewavyenclosurecomprehendinganadiabaticrotatingcylinder
AT abedmourad galerkinfiniteelementanalysisofmagnetotwophasenanofluidflowingindoublewavyenclosurecomprehendinganadiabaticrotatingcylinder
AT nawalaalshehri galerkinfiniteelementanalysisofmagnetotwophasenanofluidflowingindoublewavyenclosurecomprehendinganadiabaticrotatingcylinder
AT mohammedzakarya galerkinfiniteelementanalysisofmagnetotwophasenanofluidflowingindoublewavyenclosurecomprehendinganadiabaticrotatingcylinder
_version_ 1718383550792728576