Topical application of Cinnamomum hydroethanolic extract improves wound healing by enhancing re-epithelialization and keratin biosynthesis in streptozotocin-induced diabetic mice

Context: Cinnamomum verum J. Presl. (Lauraceae) has a high number of polyphenols with insulin-like activity, increases glucose utilization in animal muscle, and might be beneficial for diabetic patients. Objective: This study evaluated the effectiveness of an ointment prepared from Cinnamomum verum...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Amin Daemi, Mahsa Lotfi, Mohammad Reza Farahpour, Ahmad Oryan, Sina Jangkhahe Ghayour, Ali Sonboli
Formato: article
Lenguaje:EN
Publicado: Taylor & Francis Group 2019
Materias:
Acceso en línea:https://doaj.org/article/f7799f6634944717b384af4b4eb1ff76
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
Descripción
Sumario:Context: Cinnamomum verum J. Presl. (Lauraceae) has a high number of polyphenols with insulin-like activity, increases glucose utilization in animal muscle, and might be beneficial for diabetic patients. Objective: This study evaluated the effectiveness of an ointment prepared from Cinnamomum verum hydroethanolic extract on wound healing in diabetic mice. Materials and methods: A total of 54 male BALB/c mice were divided into three groups: (1) diabetic non-treated group mice that were treated with soft yellow paraffin, (2 and 3) mice that were treated with 5 and 10% C. verum. Two circular full-thickness excisional wounds were created in each mouse, and the trial lasted for 16 d following induction of the wound. Further evaluation was made on the wound contraction ratio, histopathology parameters and mRNA levels of cyclin D1, insulin-like growth factor 1 (IGF-1), glucose transporter-1 (GLUT-1), total antioxidant capacity, and malondialdehyde of granulation tissue contents. HPLC apparatus was utilized to identify the compounds. Results: The HPLC data for cinnamon hydroethanolic extract identified cinnamaldehyde (11.26%) and 2-hydroxyl cinnamaldehyde (6.7%) as the major components. A significant increase was observed in wound contraction ratio, fibroblast proliferation, collagen deposition, re-epithelialization and keratin biosynthesis in the C. verum-treated groups in comparison to the diabetic non-treated group (p < 0.05). The expression level of cyclin D1, IGF1, GLUT 1 and antioxidant capacity increased in the C. verum-treated groups in comparison to the diabetic non-treated group (p < 0.05). Conclusions: Topical administration of C. verum accelerated wound healing and can possibly be employed in treating the wounds of diabetic patients.