Identification of Novel Host Interactors of Effectors Secreted by <italic toggle="yes">Salmonella</italic> and <italic toggle="yes">Citrobacter</italic>
ABSTRACT Many pathogenic bacteria of the family Enterobacteriaceae use type III secretion systems to inject virulence proteins, termed “effectors,” into the host cell cytosol. Although host-cellular activities of several effectors have been demonstrated, the function and host-targeted pathways of mo...
Guardado en:
Autores principales: | , , , , , , , , , , , , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
American Society for Microbiology
2016
|
Materias: | |
Acceso en línea: | https://doaj.org/article/f78a2ab44ff5495684196c96fa5db218 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:doaj.org-article:f78a2ab44ff5495684196c96fa5db218 |
---|---|
record_format |
dspace |
spelling |
oai:doaj.org-article:f78a2ab44ff5495684196c96fa5db2182021-12-02T19:45:29ZIdentification of Novel Host Interactors of Effectors Secreted by <italic toggle="yes">Salmonella</italic> and <italic toggle="yes">Citrobacter</italic>10.1128/mSystems.00032-152379-5077https://doaj.org/article/f78a2ab44ff5495684196c96fa5db2182016-08-01T00:00:00Zhttps://journals.asm.org/doi/10.1128/mSystems.00032-15https://doaj.org/toc/2379-5077ABSTRACT Many pathogenic bacteria of the family Enterobacteriaceae use type III secretion systems to inject virulence proteins, termed “effectors,” into the host cell cytosol. Although host-cellular activities of several effectors have been demonstrated, the function and host-targeted pathways of most of the effectors identified to date are largely undetermined. To gain insight into host proteins targeted by bacterial effectors, we performed coaffinity purification of host proteins from cell lysates using recombinant effectors from the Enterobacteriaceae intracellular pathogens Salmonella enterica serovar Typhimurium and Citrobacter rodentium. We identified 54 high-confidence host interactors for the Salmonella effectors GogA, GtgA, GtgE, SpvC, SrfH, SseL, SspH1, and SssB collectively and 21 interactors for the Citrobacter effectors EspT, NleA, NleG1, and NleK. We biochemically validated the interaction between the SrfH Salmonella protein and the extracellular signal-regulated kinase 2 (ERK2) host protein kinase, which revealed a role for this effector in regulating phosphorylation levels of this enzyme, which plays a central role in signal transduction. IMPORTANCE During infection, pathogenic bacteria face an adverse environment of factors driven by both cellular and humoral defense mechanisms. To help evade the immune response and ultimately proliferate inside the host, many bacteria evolved specialized secretion systems to deliver effector proteins directly into host cells. Translocated effector proteins function to subvert host defense mechanisms. Numerous pathogenic bacteria use a specialized secretion system called type III secretion to deliver effectors into the host cell cytosol. Here, we identified 75 new host targets of Salmonella and Citrobacter effectors, which will help elucidate their mechanisms of action.Ryan L. SontagErnesto S. NakayasuRoslyn N. BrownGeorge S. NiemannMichael A. SydorOctavio SanchezCharles AnsongShao-Yeh LuHyungwon ChoiDylan ValleauKarl K. WeitzAlexei SavchenkoEric D. CambronneJoshua N. AdkinsAmerican Society for Microbiologyarticleaffinity purificationmass spectrometryeffectorspathogenic bacteriatype III secretion systemprotein-protein interactionsMicrobiologyQR1-502ENmSystems, Vol 1, Iss 4 (2016) |
institution |
DOAJ |
collection |
DOAJ |
language |
EN |
topic |
affinity purification mass spectrometry effectors pathogenic bacteria type III secretion system protein-protein interactions Microbiology QR1-502 |
spellingShingle |
affinity purification mass spectrometry effectors pathogenic bacteria type III secretion system protein-protein interactions Microbiology QR1-502 Ryan L. Sontag Ernesto S. Nakayasu Roslyn N. Brown George S. Niemann Michael A. Sydor Octavio Sanchez Charles Ansong Shao-Yeh Lu Hyungwon Choi Dylan Valleau Karl K. Weitz Alexei Savchenko Eric D. Cambronne Joshua N. Adkins Identification of Novel Host Interactors of Effectors Secreted by <italic toggle="yes">Salmonella</italic> and <italic toggle="yes">Citrobacter</italic> |
description |
ABSTRACT Many pathogenic bacteria of the family Enterobacteriaceae use type III secretion systems to inject virulence proteins, termed “effectors,” into the host cell cytosol. Although host-cellular activities of several effectors have been demonstrated, the function and host-targeted pathways of most of the effectors identified to date are largely undetermined. To gain insight into host proteins targeted by bacterial effectors, we performed coaffinity purification of host proteins from cell lysates using recombinant effectors from the Enterobacteriaceae intracellular pathogens Salmonella enterica serovar Typhimurium and Citrobacter rodentium. We identified 54 high-confidence host interactors for the Salmonella effectors GogA, GtgA, GtgE, SpvC, SrfH, SseL, SspH1, and SssB collectively and 21 interactors for the Citrobacter effectors EspT, NleA, NleG1, and NleK. We biochemically validated the interaction between the SrfH Salmonella protein and the extracellular signal-regulated kinase 2 (ERK2) host protein kinase, which revealed a role for this effector in regulating phosphorylation levels of this enzyme, which plays a central role in signal transduction. IMPORTANCE During infection, pathogenic bacteria face an adverse environment of factors driven by both cellular and humoral defense mechanisms. To help evade the immune response and ultimately proliferate inside the host, many bacteria evolved specialized secretion systems to deliver effector proteins directly into host cells. Translocated effector proteins function to subvert host defense mechanisms. Numerous pathogenic bacteria use a specialized secretion system called type III secretion to deliver effectors into the host cell cytosol. Here, we identified 75 new host targets of Salmonella and Citrobacter effectors, which will help elucidate their mechanisms of action. |
format |
article |
author |
Ryan L. Sontag Ernesto S. Nakayasu Roslyn N. Brown George S. Niemann Michael A. Sydor Octavio Sanchez Charles Ansong Shao-Yeh Lu Hyungwon Choi Dylan Valleau Karl K. Weitz Alexei Savchenko Eric D. Cambronne Joshua N. Adkins |
author_facet |
Ryan L. Sontag Ernesto S. Nakayasu Roslyn N. Brown George S. Niemann Michael A. Sydor Octavio Sanchez Charles Ansong Shao-Yeh Lu Hyungwon Choi Dylan Valleau Karl K. Weitz Alexei Savchenko Eric D. Cambronne Joshua N. Adkins |
author_sort |
Ryan L. Sontag |
title |
Identification of Novel Host Interactors of Effectors Secreted by <italic toggle="yes">Salmonella</italic> and <italic toggle="yes">Citrobacter</italic> |
title_short |
Identification of Novel Host Interactors of Effectors Secreted by <italic toggle="yes">Salmonella</italic> and <italic toggle="yes">Citrobacter</italic> |
title_full |
Identification of Novel Host Interactors of Effectors Secreted by <italic toggle="yes">Salmonella</italic> and <italic toggle="yes">Citrobacter</italic> |
title_fullStr |
Identification of Novel Host Interactors of Effectors Secreted by <italic toggle="yes">Salmonella</italic> and <italic toggle="yes">Citrobacter</italic> |
title_full_unstemmed |
Identification of Novel Host Interactors of Effectors Secreted by <italic toggle="yes">Salmonella</italic> and <italic toggle="yes">Citrobacter</italic> |
title_sort |
identification of novel host interactors of effectors secreted by <italic toggle="yes">salmonella</italic> and <italic toggle="yes">citrobacter</italic> |
publisher |
American Society for Microbiology |
publishDate |
2016 |
url |
https://doaj.org/article/f78a2ab44ff5495684196c96fa5db218 |
work_keys_str_mv |
AT ryanlsontag identificationofnovelhostinteractorsofeffectorssecretedbyitalictoggleyessalmonellaitalicanditalictoggleyescitrobacteritalic AT ernestosnakayasu identificationofnovelhostinteractorsofeffectorssecretedbyitalictoggleyessalmonellaitalicanditalictoggleyescitrobacteritalic AT roslynnbrown identificationofnovelhostinteractorsofeffectorssecretedbyitalictoggleyessalmonellaitalicanditalictoggleyescitrobacteritalic AT georgesniemann identificationofnovelhostinteractorsofeffectorssecretedbyitalictoggleyessalmonellaitalicanditalictoggleyescitrobacteritalic AT michaelasydor identificationofnovelhostinteractorsofeffectorssecretedbyitalictoggleyessalmonellaitalicanditalictoggleyescitrobacteritalic AT octaviosanchez identificationofnovelhostinteractorsofeffectorssecretedbyitalictoggleyessalmonellaitalicanditalictoggleyescitrobacteritalic AT charlesansong identificationofnovelhostinteractorsofeffectorssecretedbyitalictoggleyessalmonellaitalicanditalictoggleyescitrobacteritalic AT shaoyehlu identificationofnovelhostinteractorsofeffectorssecretedbyitalictoggleyessalmonellaitalicanditalictoggleyescitrobacteritalic AT hyungwonchoi identificationofnovelhostinteractorsofeffectorssecretedbyitalictoggleyessalmonellaitalicanditalictoggleyescitrobacteritalic AT dylanvalleau identificationofnovelhostinteractorsofeffectorssecretedbyitalictoggleyessalmonellaitalicanditalictoggleyescitrobacteritalic AT karlkweitz identificationofnovelhostinteractorsofeffectorssecretedbyitalictoggleyessalmonellaitalicanditalictoggleyescitrobacteritalic AT alexeisavchenko identificationofnovelhostinteractorsofeffectorssecretedbyitalictoggleyessalmonellaitalicanditalictoggleyescitrobacteritalic AT ericdcambronne identificationofnovelhostinteractorsofeffectorssecretedbyitalictoggleyessalmonellaitalicanditalictoggleyescitrobacteritalic AT joshuanadkins identificationofnovelhostinteractorsofeffectorssecretedbyitalictoggleyessalmonellaitalicanditalictoggleyescitrobacteritalic |
_version_ |
1718376061460283392 |