Improvement of microwave absorption properties of polyester coatings using NiFe2O4, X-doped g-C3N4 (X = S, P, and O), and MTiO3 (M = Fe, Mg, and Zn) nanofillers
Abstract In recent decades, to reduce electromagnetic pollution, scientists focus on finding new microwave absorbers with effective performance, thin thickness, and broad bandwidth. In this work, the nanoparticles of NiFe2O4, X-doped g-C3N4 (M = S, P, and O), and MTiO3 (M = Fe, Mg, and Zn) were succ...
Guardado en:
Autores principales: | , , , , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/f79578ea2800433397a232563a867fc0 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:doaj.org-article:f79578ea2800433397a232563a867fc0 |
---|---|
record_format |
dspace |
spelling |
oai:doaj.org-article:f79578ea2800433397a232563a867fc02021-12-02T19:16:54ZImprovement of microwave absorption properties of polyester coatings using NiFe2O4, X-doped g-C3N4 (X = S, P, and O), and MTiO3 (M = Fe, Mg, and Zn) nanofillers10.1038/s41598-021-98666-62045-2322https://doaj.org/article/f79578ea2800433397a232563a867fc02021-09-01T00:00:00Zhttps://doi.org/10.1038/s41598-021-98666-6https://doaj.org/toc/2045-2322Abstract In recent decades, to reduce electromagnetic pollution, scientists focus on finding new microwave absorbers with effective performance, thin thickness, and broad bandwidth. In this work, the nanoparticles of NiFe2O4, X-doped g-C3N4 (M = S, P, and O), and MTiO3 (M = Fe, Mg, and Zn) were successfully synthesized using co-precipitation, specific heat program, and semi-wet sol–gel methods, respectively. The synthesized nanoparticles were utilized as absorption agents and polyester resin as the matrix. Morphology, particle size, crystal structure, and chemical composition of the prepared nanocomposites were characterized by scanning electron microscope (SEM), transmission electron microscope (TEM), X-ray diffractometer (XRD), and energy dispersive X-Ray analysis (EDX), respectively. The microwave absorption performance of the coatings was also investigated by a vector network analyzer (VNA). Moreover, the effect of different parameters on the performance of absorbent coatings was studied by the Taguchi method and optimized to achieve an optimal absorbent. The results showed that the optimal nanocomposite has the reflectance loss (RL) less than − 30 dB (equal to absorption > 99%) at a high-frequency range (8–12 GHz) and 1 mm thickness. Furthermore, the addition of such novel nanoparticles to absorbents resulted in high values of attenuation constant (more than 200 dB/m) at the X-band. Therefore, the polyester coating filled with ZnTiO3, O-doped g-C3N4, and NiFe2O4 nanofillers can be considered a high-efficiency and low-density absorber.Somayeh SolgiMir Saeed Seyed DorrajiSeyyedeh Fatemeh HosseiniMohammad Hossein RasoulifardIsmael HajimiriAlireza Amani-GhadimNature PortfolioarticleMedicineRScienceQENScientific Reports, Vol 11, Iss 1, Pp 1-13 (2021) |
institution |
DOAJ |
collection |
DOAJ |
language |
EN |
topic |
Medicine R Science Q |
spellingShingle |
Medicine R Science Q Somayeh Solgi Mir Saeed Seyed Dorraji Seyyedeh Fatemeh Hosseini Mohammad Hossein Rasoulifard Ismael Hajimiri Alireza Amani-Ghadim Improvement of microwave absorption properties of polyester coatings using NiFe2O4, X-doped g-C3N4 (X = S, P, and O), and MTiO3 (M = Fe, Mg, and Zn) nanofillers |
description |
Abstract In recent decades, to reduce electromagnetic pollution, scientists focus on finding new microwave absorbers with effective performance, thin thickness, and broad bandwidth. In this work, the nanoparticles of NiFe2O4, X-doped g-C3N4 (M = S, P, and O), and MTiO3 (M = Fe, Mg, and Zn) were successfully synthesized using co-precipitation, specific heat program, and semi-wet sol–gel methods, respectively. The synthesized nanoparticles were utilized as absorption agents and polyester resin as the matrix. Morphology, particle size, crystal structure, and chemical composition of the prepared nanocomposites were characterized by scanning electron microscope (SEM), transmission electron microscope (TEM), X-ray diffractometer (XRD), and energy dispersive X-Ray analysis (EDX), respectively. The microwave absorption performance of the coatings was also investigated by a vector network analyzer (VNA). Moreover, the effect of different parameters on the performance of absorbent coatings was studied by the Taguchi method and optimized to achieve an optimal absorbent. The results showed that the optimal nanocomposite has the reflectance loss (RL) less than − 30 dB (equal to absorption > 99%) at a high-frequency range (8–12 GHz) and 1 mm thickness. Furthermore, the addition of such novel nanoparticles to absorbents resulted in high values of attenuation constant (more than 200 dB/m) at the X-band. Therefore, the polyester coating filled with ZnTiO3, O-doped g-C3N4, and NiFe2O4 nanofillers can be considered a high-efficiency and low-density absorber. |
format |
article |
author |
Somayeh Solgi Mir Saeed Seyed Dorraji Seyyedeh Fatemeh Hosseini Mohammad Hossein Rasoulifard Ismael Hajimiri Alireza Amani-Ghadim |
author_facet |
Somayeh Solgi Mir Saeed Seyed Dorraji Seyyedeh Fatemeh Hosseini Mohammad Hossein Rasoulifard Ismael Hajimiri Alireza Amani-Ghadim |
author_sort |
Somayeh Solgi |
title |
Improvement of microwave absorption properties of polyester coatings using NiFe2O4, X-doped g-C3N4 (X = S, P, and O), and MTiO3 (M = Fe, Mg, and Zn) nanofillers |
title_short |
Improvement of microwave absorption properties of polyester coatings using NiFe2O4, X-doped g-C3N4 (X = S, P, and O), and MTiO3 (M = Fe, Mg, and Zn) nanofillers |
title_full |
Improvement of microwave absorption properties of polyester coatings using NiFe2O4, X-doped g-C3N4 (X = S, P, and O), and MTiO3 (M = Fe, Mg, and Zn) nanofillers |
title_fullStr |
Improvement of microwave absorption properties of polyester coatings using NiFe2O4, X-doped g-C3N4 (X = S, P, and O), and MTiO3 (M = Fe, Mg, and Zn) nanofillers |
title_full_unstemmed |
Improvement of microwave absorption properties of polyester coatings using NiFe2O4, X-doped g-C3N4 (X = S, P, and O), and MTiO3 (M = Fe, Mg, and Zn) nanofillers |
title_sort |
improvement of microwave absorption properties of polyester coatings using nife2o4, x-doped g-c3n4 (x = s, p, and o), and mtio3 (m = fe, mg, and zn) nanofillers |
publisher |
Nature Portfolio |
publishDate |
2021 |
url |
https://doaj.org/article/f79578ea2800433397a232563a867fc0 |
work_keys_str_mv |
AT somayehsolgi improvementofmicrowaveabsorptionpropertiesofpolyestercoatingsusingnife2o4xdopedgc3n4xspandoandmtio3mfemgandznnanofillers AT mirsaeedseyeddorraji improvementofmicrowaveabsorptionpropertiesofpolyestercoatingsusingnife2o4xdopedgc3n4xspandoandmtio3mfemgandznnanofillers AT seyyedehfatemehhosseini improvementofmicrowaveabsorptionpropertiesofpolyestercoatingsusingnife2o4xdopedgc3n4xspandoandmtio3mfemgandznnanofillers AT mohammadhosseinrasoulifard improvementofmicrowaveabsorptionpropertiesofpolyestercoatingsusingnife2o4xdopedgc3n4xspandoandmtio3mfemgandznnanofillers AT ismaelhajimiri improvementofmicrowaveabsorptionpropertiesofpolyestercoatingsusingnife2o4xdopedgc3n4xspandoandmtio3mfemgandznnanofillers AT alirezaamanighadim improvementofmicrowaveabsorptionpropertiesofpolyestercoatingsusingnife2o4xdopedgc3n4xspandoandmtio3mfemgandznnanofillers |
_version_ |
1718376949606252544 |