Predicting prognosis and IDH mutation status for patients with lower-grade gliomas using whole slide images

Abstract We developed end-to-end deep learning models using whole slide images of adults diagnosed with diffusely infiltrating, World Health Organization (WHO) grade 2 gliomas to predict prognosis and the mutation status of a somatic biomarker, isocitrate dehydrogenase (IDH) 1/2. The models, which u...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Shuai Jiang, George J. Zanazzi, Saeed Hassanpour
Formato: article
Lenguaje:EN
Publicado: Nature Portfolio 2021
Materias:
R
Q
Acceso en línea:https://doaj.org/article/f7a305b6c0774af5b9b9e09e00f7d2d9
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
Descripción
Sumario:Abstract We developed end-to-end deep learning models using whole slide images of adults diagnosed with diffusely infiltrating, World Health Organization (WHO) grade 2 gliomas to predict prognosis and the mutation status of a somatic biomarker, isocitrate dehydrogenase (IDH) 1/2. The models, which utilize ResNet-18 as a backbone, were developed and validated on 296 patients from The Cancer Genome Atlas (TCGA) database. To account for the small sample size, repeated random train/test splits were performed for hyperparameter tuning, and the out-of-sample predictions were pooled for evaluation. Our models achieved a concordance- (C-) index of 0.715 (95% CI: 0.569, 0.830) for predicting prognosis and an area under the curve (AUC) of 0.667 (0.532, 0.784) for predicting IDH mutations. When combined with additional clinical information, the performance metrics increased to 0.784 (95% CI: 0.655, 0.880) and 0.739 (95% CI: 0.613, 0.856), respectively. When evaluated on the WHO grade 3 gliomas from the TCGA dataset, which were not used for training, our models predicted survival with a C-index of 0.654 (95% CI: 0.537, 0.768) and IDH mutations with an AUC of 0.814 (95% CI: 0.721, 0.897). If validated in a prospective study, our method could potentially assist clinicians in managing and treating patients with diffusely infiltrating gliomas.