A bounded degree SOS hierarchy for polynomial optimization
We consider a new hierarchy of semidefinite relaxations for the general polynomial optimization problem (P):f∗=min{f(x):x∈K} on a compact basic semi-algebraic set K⊂Rn. This hierarchy combines some advantages of the standard LP-relaxations associated with Krivine’s positivity certificate and some ad...
Enregistré dans:
Auteurs principaux: | JeanB. Lasserre, Kim-Chuan Toh, Shouguang Yang |
---|---|
Format: | article |
Langue: | EN |
Publié: |
Elsevier
2017
|
Sujets: | |
Accès en ligne: | https://doaj.org/article/f7a832f91ebf494a86d3f951e8a7e8fe |
Tags: |
Ajouter un tag
Pas de tags, Soyez le premier à ajouter un tag!
|
Documents similaires
-
Alternative SDP and SOCP approximations for polynomial optimization
par: Xiaolong Kuang, et autres
Publié: (2019) -
On global optimization with indefinite quadratics
par: Marcia Fampa, et autres
Publié: (2017) -
A modification of the αBB method for box-constrained optimization and an application to inverse kinematics
par: Gabriele Eichfelder, et autres
Publié: (2016) -
Sufficient pruning conditions for MINLP in gas network design
par: Jesco Humpola, et autres
Publié: (2017) -
Joint location and pricing within a user-optimized environment
par: Teodora Dan, et autres
Publié: (2020)