A bounded degree SOS hierarchy for polynomial optimization
We consider a new hierarchy of semidefinite relaxations for the general polynomial optimization problem (P):f∗=min{f(x):x∈K} on a compact basic semi-algebraic set K⊂Rn. This hierarchy combines some advantages of the standard LP-relaxations associated with Krivine’s positivity certificate and some ad...
Guardado en:
Autores principales: | JeanB. Lasserre, Kim-Chuan Toh, Shouguang Yang |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Elsevier
2017
|
Materias: | |
Acceso en línea: | https://doaj.org/article/f7a832f91ebf494a86d3f951e8a7e8fe |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Alternative SDP and SOCP approximations for polynomial optimization
por: Xiaolong Kuang, et al.
Publicado: (2019) -
On global optimization with indefinite quadratics
por: Marcia Fampa, et al.
Publicado: (2017) -
A modification of the αBB method for box-constrained optimization and an application to inverse kinematics
por: Gabriele Eichfelder, et al.
Publicado: (2016) -
Sufficient pruning conditions for MINLP in gas network design
por: Jesco Humpola, et al.
Publicado: (2017) -
Joint location and pricing within a user-optimized environment
por: Teodora Dan, et al.
Publicado: (2020)