Evaluation of HRV estimation algorithms from PPG data using neural networks

Heart rate variability (HRV) is a powerful measure to gain information on the activation of the central nervous system and is thus a strong indicator for the overall health and emotional state of a person. Currently, the gold standard for HRV analysis is the examination of R-peaks in electrocardiogr...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Wittenberg Th., Koch R., Pfeiffer N., Lang N., Struck M., Amft O., Eskofier B.
Formato: article
Lenguaje:EN
Publicado: De Gruyter 2020
Materias:
ppg
hrv
R
Acceso en línea:https://doaj.org/article/f7b0e9de10784e8798fb417cafe37054
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
Descripción
Sumario:Heart rate variability (HRV) is a powerful measure to gain information on the activation of the central nervous system and is thus a strong indicator for the overall health and emotional state of a person. Currently, the gold standard for HRV analysis is the examination of R-peaks in electrocardiograms (ECG), which requires a placement of electrodes on the torso. This is often impracticable, especially for the use in daily routines or 24/7 measurements. Photoplethysmograms (PPG) are an alternative to ECG assessment and are easier to acquire, e.g. by using fitness trackers or smart watches. Nevertheless, PPG data is more susceptible to motion artifacts. Hence, goal of this work is to develop and evaluate an artificial neural network (ANN) approach to estimate the R-peak locations in complex PPG signals. Public data collections were used as benchmark to compare our ANN-based approach to state-of-the-art methods. Results show that ANNs can improve HRV estimation during motion. HRV estimations from baseline methods (decision-tree based and automatic multiscalebased peak detection) were compared with the best performing neural network (3L-GRU) using the TROIKA dataset with respect to reference parameters obtained from a manual selection of the peaks in ECG data. In most cases, the neural network based HRV estimation was closer to the reference HRV compared to baseline methods (lower μ and σ ) Also, σ is smaller for the best performing ANN approach across most HRV parameters. Inclusion of another PPG or acceleration channel did not affect HRV estimation. Although, the neural network learning approach outperforms conventional methods, the examined PPG-based HRV estimation has still accuracy limitations. Nonetheless, the proposed estimation approach opens up new directions for further improvement.