Information filtering on coupled social networks.

In this paper, based on the coupled social networks (CSN), we propose a hybrid algorithm to nonlinearly integrate both social and behavior information of online users. Filtering algorithm, based on the coupled social networks, considers the effects of both social similarity and personalized preferen...

Description complète

Enregistré dans:
Détails bibliographiques
Auteurs principaux: Da-Cheng Nie, Zi-Ke Zhang, Jun-Lin Zhou, Yan Fu, Kui Zhang
Format: article
Langue:EN
Publié: Public Library of Science (PLoS) 2014
Sujets:
R
Q
Accès en ligne:https://doaj.org/article/f7cdb2668fbc40b7bc76d3b59017e407
Tags: Ajouter un tag
Pas de tags, Soyez le premier à ajouter un tag!
Description
Résumé:In this paper, based on the coupled social networks (CSN), we propose a hybrid algorithm to nonlinearly integrate both social and behavior information of online users. Filtering algorithm, based on the coupled social networks, considers the effects of both social similarity and personalized preference. Experimental results based on two real datasets, Epinions and Friendfeed, show that the hybrid pattern can not only provide more accurate recommendations, but also enlarge the recommendation coverage while adopting global metric. Further empirical analyses demonstrate that the mutual reinforcement and rich-club phenomenon can also be found in coupled social networks where the identical individuals occupy the core position of the online system. This work may shed some light on the in-depth understanding of the structure and function of coupled social networks.