Energy Efficient Medical Data Dimensionality Reduction using Optimized Principal Component Analysis
INTRODUCTION: The method of minimizing the number of random variables or attributes from the enormous data set is the reduction of dimensionality. The space available for storing the database is therefore minimized by decreasing the scale of the features. OBJECTIVES: The PCA algorithm is used...
Guardado en:
Autores principales: | S. Sophia, K. Thanammal, S. Sujatha |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
European Alliance for Innovation (EAI)
2022
|
Materias: | |
Acceso en línea: | https://doaj.org/article/f7e660bb57134f518b3750de86fc828b |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Some Further Results on the Reduction of Two-Dimensional Systems
por: Dongmei Li, et al.
Publicado: (2021) -
Approximate Inertial Manifold-Based Model Reduction and Vibration Suppression for Rigid-Flexible Mechanical Arms
por: Lisha Xu, et al.
Publicado: (2021) -
An Effective Reactive Power Compensation Method and a Modern Metaheuristic Algorithm for Loss Reduction in Distribution Power Networks
por: Thang Trung Nguyen, et al.
Publicado: (2021) -
Architectural Interior Modeling Product Design Based on the Multimedia Three-Dimensional Hybrid Algorithm
por: Tao Su, et al.
Publicado: (2021) -
Corrigendum to “A Novel MILP Model for the Production, Lot Sizing, and Scheduling of Automotive Plastic Components on Parallel Flexible Injection Machines with Setup Common Operators”
por: Beatriz Andres, et al.
Publicado: (2021)