Detection of Outliers in LiDAR Data Acquired by Multiple Platforms over Sorghum and Maize
High-resolution point cloud data acquired with a laser scanner from any platform contain random noise and outliers. Therefore, outlier detection in LiDAR data is often necessary prior to analysis. Applications in agriculture are particularly challenging, as there is typically no prior knowledge of t...
Enregistré dans:
Auteurs principaux: | Behrokh Nazeri, Melba Crawford |
---|---|
Format: | article |
Langue: | EN |
Publié: |
MDPI AG
2021
|
Sujets: | |
Accès en ligne: | https://doaj.org/article/f7f77a6e54344f13aa1b7b9960399d70 |
Tags: |
Ajouter un tag
Pas de tags, Soyez le premier à ajouter un tag!
|
Documents similaires
-
Estimating Leaf Area Index in Row Crops Using Wheel-Based and Airborne Discrete Return Light Detection and Ranging Data
par: Behrokh Nazeri, et autres
Publié: (2021) -
Assessing understory development in forest plantations using laser imaging detection and ranging (LiDAR)
par: HERNÁNDEZ,JAIME, et autres
Publié: (2013) -
A Low-Cost, Easy-Way Workflow for Multi-Scale Archaeological Features Detection Combining LiDAR and Aerial Orthophotography
par: Antonio J. Ortiz-Villarejo, et autres
Publié: (2021) -
Mapping tree genera using discrete LiDAR and geometric tree metrics
par: Ko,Connie, et autres
Publié: (2012) -
PEMCNet: An Efficient Multi-Scale Point Feature Fusion Network for 3D LiDAR Point Cloud Classification
par: Genping Zhao, et autres
Publié: (2021)