Coastal Waste Detection Based on Deep Convolutional Neural Networks
Coastal waste not only has a seriously destructive effect on human life and marine ecosystems, but it also poses a long-term economic and environmental threat. To solve the issues of a poor manual coastal waste sorting environment, such as low sorting efficiency and heavy tasks, we develop a novel d...
Guardado en:
Autores principales: | Chengjuan Ren, Hyunjun Jung, Sukhoon Lee, Dongwon Jeong |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
MDPI AG
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/f810585b9c4146a4a39aa44425bcf90a |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Fused-Deep-Features Based Grape Leaf Disease Diagnosis
por: Yun Peng, et al.
Publicado: (2021) -
A Fluorescent Biosensor for Sensitive Detection of <i>Salmonella</i> Typhimurium Using Low-Gradient Magnetic Field and Deep Learning via Faster Region-Based Convolutional Neural Network
por: Qiwei Hu, et al.
Publicado: (2021) -
A comparison of convolutional neural networks for Kazakh sign language recognition
por: Chingiz Kenshimov, et al.
Publicado: (2021) -
Sequentially Delineation of Rooftops with Holes from VHR Aerial Images Using a Convolutional Recurrent Neural Network
por: Wei Huang, et al.
Publicado: (2021) -
Using Deep Convolutional Neural Networks and Infrared Thermography to Identify Coal Quality and Gangue
por: Refat Mohammed Abdullah Eshaq, et al.
Publicado: (2021)