The Color Number of Cubic Graphs Having a Spanning Tree with a Bounded Number of Leaves

The color number c(G) of a cubic graph G is the minimum cardinality of a color class of a proper 4-edge-coloring of G. It is well-known that every cubic graph G satisfies c(G) = 0 if G has a Hamiltonian cycle, and c(G) ≤ 2 if G has a Hamiltonian path. In this paper, we extend these observations by o...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Analen Malnegro, Gina Malacas, Kenta Ozeki
Formato: article
Lenguaje:EN
Publicado: Georgia Southern University 2021
Materias:
Acceso en línea:https://doaj.org/article/f814dea546534ab3ab7237df9aec5418
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
Descripción
Sumario:The color number c(G) of a cubic graph G is the minimum cardinality of a color class of a proper 4-edge-coloring of G. It is well-known that every cubic graph G satisfies c(G) = 0 if G has a Hamiltonian cycle, and c(G) ≤ 2 if G has a Hamiltonian path. In this paper, we extend these observations by obtaining a bound for the color number of cubic graphs having a spanning tree with a bounded number of leaves.