The Color Number of Cubic Graphs Having a Spanning Tree with a Bounded Number of Leaves

The color number c(G) of a cubic graph G is the minimum cardinality of a color class of a proper 4-edge-coloring of G. It is well-known that every cubic graph G satisfies c(G) = 0 if G has a Hamiltonian cycle, and c(G) ≤ 2 if G has a Hamiltonian path. In this paper, we extend these observations by o...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Analen Malnegro, Gina Malacas, Kenta Ozeki
Formato: article
Lenguaje:EN
Publicado: Georgia Southern University 2021
Materias:
Acceso en línea:https://doaj.org/article/f814dea546534ab3ab7237df9aec5418
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:f814dea546534ab3ab7237df9aec5418
record_format dspace
spelling oai:doaj.org-article:f814dea546534ab3ab7237df9aec54182021-11-16T16:59:16ZThe Color Number of Cubic Graphs Having a Spanning Tree with a Bounded Number of Leaves2470-985910.20429/tag.2021.080201https://doaj.org/article/f814dea546534ab3ab7237df9aec54182021-07-01T00:00:00Zhttps://digitalcommons.georgiasouthern.edu/tag/vol8/iss2/1https://doaj.org/toc/2470-9859The color number c(G) of a cubic graph G is the minimum cardinality of a color class of a proper 4-edge-coloring of G. It is well-known that every cubic graph G satisfies c(G) = 0 if G has a Hamiltonian cycle, and c(G) ≤ 2 if G has a Hamiltonian path. In this paper, we extend these observations by obtaining a bound for the color number of cubic graphs having a spanning tree with a bounded number of leaves.Analen MalnegroGina MalacasKenta OzekiGeorgia Southern Universityarticlecolor numbercubic graphedge-coloringspanning treeMathematicsQA1-939ENTheory and Applications of Graphs, Vol 8, Iss 2 (2021)
institution DOAJ
collection DOAJ
language EN
topic color number
cubic graph
edge-coloring
spanning tree
Mathematics
QA1-939
spellingShingle color number
cubic graph
edge-coloring
spanning tree
Mathematics
QA1-939
Analen Malnegro
Gina Malacas
Kenta Ozeki
The Color Number of Cubic Graphs Having a Spanning Tree with a Bounded Number of Leaves
description The color number c(G) of a cubic graph G is the minimum cardinality of a color class of a proper 4-edge-coloring of G. It is well-known that every cubic graph G satisfies c(G) = 0 if G has a Hamiltonian cycle, and c(G) ≤ 2 if G has a Hamiltonian path. In this paper, we extend these observations by obtaining a bound for the color number of cubic graphs having a spanning tree with a bounded number of leaves.
format article
author Analen Malnegro
Gina Malacas
Kenta Ozeki
author_facet Analen Malnegro
Gina Malacas
Kenta Ozeki
author_sort Analen Malnegro
title The Color Number of Cubic Graphs Having a Spanning Tree with a Bounded Number of Leaves
title_short The Color Number of Cubic Graphs Having a Spanning Tree with a Bounded Number of Leaves
title_full The Color Number of Cubic Graphs Having a Spanning Tree with a Bounded Number of Leaves
title_fullStr The Color Number of Cubic Graphs Having a Spanning Tree with a Bounded Number of Leaves
title_full_unstemmed The Color Number of Cubic Graphs Having a Spanning Tree with a Bounded Number of Leaves
title_sort color number of cubic graphs having a spanning tree with a bounded number of leaves
publisher Georgia Southern University
publishDate 2021
url https://doaj.org/article/f814dea546534ab3ab7237df9aec5418
work_keys_str_mv AT analenmalnegro thecolornumberofcubicgraphshavingaspanningtreewithaboundednumberofleaves
AT ginamalacas thecolornumberofcubicgraphshavingaspanningtreewithaboundednumberofleaves
AT kentaozeki thecolornumberofcubicgraphshavingaspanningtreewithaboundednumberofleaves
AT analenmalnegro colornumberofcubicgraphshavingaspanningtreewithaboundednumberofleaves
AT ginamalacas colornumberofcubicgraphshavingaspanningtreewithaboundednumberofleaves
AT kentaozeki colornumberofcubicgraphshavingaspanningtreewithaboundednumberofleaves
_version_ 1718426335678824448