The Color Number of Cubic Graphs Having a Spanning Tree with a Bounded Number of Leaves
The color number c(G) of a cubic graph G is the minimum cardinality of a color class of a proper 4-edge-coloring of G. It is well-known that every cubic graph G satisfies c(G) = 0 if G has a Hamiltonian cycle, and c(G) ≤ 2 if G has a Hamiltonian path. In this paper, we extend these observations by o...
Guardado en:
Autores principales: | Analen Malnegro, Gina Malacas, Kenta Ozeki |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Georgia Southern University
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/f814dea546534ab3ab7237df9aec5418 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Rainbow and strong rainbow connection number for some families of graphs
por: Khan,Yaqoub Ahmed, et al.
Publicado: (2020) -
On Graphs with Proper Connection Number 2
por: Jill Faudree, et al.
Publicado: (2021) -
On graphs whose chromatic transversal number is two
por: Ayyaswamy,S.K, et al.
Publicado: (2011) -
Equitable total chromatic number of splitting graph
por: Jayaraman,G., et al.
Publicado: (2019) -
On locating chromatic number of Möbius ladder graphs
por: Sakri,Redha, et al.
Publicado: (2021)