Analysis of <sup>14</sup>C, <sup>13</sup>C and Aspartic Acid Racemization in Teeth and Bones to Facilitate Identification of Unknown Human Remains: Outcomes of Practical Casework

The identification of unknown human remains represents an important task in forensic casework. If there are no clues as to the identity of the remains, then the age, sex, and origin are the most important factors to limit the search for a matching person. Here, we present the outcome of application...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Rebecka Teglind, Irena Dawidson, Jonas Balkefors, Kanar Alkass
Formato: article
Lenguaje:EN
Publicado: MDPI AG 2021
Materias:
Acceso en línea:https://doaj.org/article/f82010245b204c57aea23edb8bbd2d04
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
Descripción
Sumario:The identification of unknown human remains represents an important task in forensic casework. If there are no clues as to the identity of the remains, then the age, sex, and origin are the most important factors to limit the search for a matching person. Here, we present the outcome of application of so-called bomb pulse radiocarbon (<sup>14</sup>C derived from above-ground nuclear bomb tests during 1955–1963) analysis to birthdate human remains. In nine identified cases, <sup>14</sup>C analysis of tooth crowns provided an estimate of the true date of birth with an average absolute error of 1.2 ± 0.8 years. Analysis of <sup>14</sup>C in tooth roots also showed a good precision with an average absolute error of 2.3 ± 2.5 years. Levels of <sup>14</sup>C in bones can determine whether a subject has lived after 1955 or not, but more precise carbon turnover data for bones would be needed to calculate date of birth and date of death. Aspartic acid racemization analysis was performed on samples from four cases; in one of these, the year of birth could be predicted with good precision, whereas the other three cases are still unidentified. The stable isotope <sup>13</sup>C was analyzed in tooth crowns to estimate provenance. Levels of <sup>13</sup>C indicative of Scandinavian provenance were found in known Scandinavian subjects. Teeth from four Polish subjects all showed higher <sup>13</sup>C levels than the average for Scandinavian subjects.