Hyper-parameter optimization for support vector machines using stochastic gradient descent and dual coordinate descent

We developed a gradient-based method to optimize the regularization hyper-parameter, C, for support vector machines in a bilevel optimization framework. On the upper level, we optimized the hyper-parameter C to minimize the prediction loss on validation data using stochastic gradient descent. On the...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: W.e.i. Jiang, Sauleh Siddiqui
Formato: article
Lenguaje:EN
Publicado: Elsevier 2020
Materias:
Acceso en línea:https://doaj.org/article/f82d7c90108a43cf8c8fd9386871b915
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:f82d7c90108a43cf8c8fd9386871b915
record_format dspace
spelling oai:doaj.org-article:f82d7c90108a43cf8c8fd9386871b9152021-12-02T05:00:33ZHyper-parameter optimization for support vector machines using stochastic gradient descent and dual coordinate descent2192-440610.1007/s13675-019-00115-7https://doaj.org/article/f82d7c90108a43cf8c8fd9386871b9152020-03-01T00:00:00Zhttp://www.sciencedirect.com/science/article/pii/S2192440621000083https://doaj.org/toc/2192-4406We developed a gradient-based method to optimize the regularization hyper-parameter, C, for support vector machines in a bilevel optimization framework. On the upper level, we optimized the hyper-parameter C to minimize the prediction loss on validation data using stochastic gradient descent. On the lower level, we used dual coordinate descent to optimize the parameters of support vector machines to minimize the loss on training data. The gradient of the loss function on the upper level with respect to the hyper-parameter, C, was computed using the implicit function theorem combined with the optimality condition of the lower-level problem, i.e., the dual problem of support vector machines. We compared our method with the existing gradient-based method in the literature on several datasets. Numerical results showed that our method converges faster to the optimal solution and achieves better prediction accuracy for large-scale support vector machine problems.W.e.i. JiangSauleh SiddiquiElsevierarticle90–08Applied mathematics. Quantitative methodsT57-57.97Electronic computers. Computer scienceQA75.5-76.95ENEURO Journal on Computational Optimization, Vol 8, Iss 1, Pp 85-101 (2020)
institution DOAJ
collection DOAJ
language EN
topic 90–08
Applied mathematics. Quantitative methods
T57-57.97
Electronic computers. Computer science
QA75.5-76.95
spellingShingle 90–08
Applied mathematics. Quantitative methods
T57-57.97
Electronic computers. Computer science
QA75.5-76.95
W.e.i. Jiang
Sauleh Siddiqui
Hyper-parameter optimization for support vector machines using stochastic gradient descent and dual coordinate descent
description We developed a gradient-based method to optimize the regularization hyper-parameter, C, for support vector machines in a bilevel optimization framework. On the upper level, we optimized the hyper-parameter C to minimize the prediction loss on validation data using stochastic gradient descent. On the lower level, we used dual coordinate descent to optimize the parameters of support vector machines to minimize the loss on training data. The gradient of the loss function on the upper level with respect to the hyper-parameter, C, was computed using the implicit function theorem combined with the optimality condition of the lower-level problem, i.e., the dual problem of support vector machines. We compared our method with the existing gradient-based method in the literature on several datasets. Numerical results showed that our method converges faster to the optimal solution and achieves better prediction accuracy for large-scale support vector machine problems.
format article
author W.e.i. Jiang
Sauleh Siddiqui
author_facet W.e.i. Jiang
Sauleh Siddiqui
author_sort W.e.i. Jiang
title Hyper-parameter optimization for support vector machines using stochastic gradient descent and dual coordinate descent
title_short Hyper-parameter optimization for support vector machines using stochastic gradient descent and dual coordinate descent
title_full Hyper-parameter optimization for support vector machines using stochastic gradient descent and dual coordinate descent
title_fullStr Hyper-parameter optimization for support vector machines using stochastic gradient descent and dual coordinate descent
title_full_unstemmed Hyper-parameter optimization for support vector machines using stochastic gradient descent and dual coordinate descent
title_sort hyper-parameter optimization for support vector machines using stochastic gradient descent and dual coordinate descent
publisher Elsevier
publishDate 2020
url https://doaj.org/article/f82d7c90108a43cf8c8fd9386871b915
work_keys_str_mv AT weijiang hyperparameteroptimizationforsupportvectormachinesusingstochasticgradientdescentanddualcoordinatedescent
AT saulehsiddiqui hyperparameteroptimizationforsupportvectormachinesusingstochasticgradientdescentanddualcoordinatedescent
_version_ 1718400867341697024