Genetic diversity of ‘Very Important Pharmacogenes’ in two South-Asian populations

Objectives Reliable identification of population-specific variants is important for building the single nucleotide polymorphism (SNP) profile. In this study, genomic variation using allele frequency differences of pharmacologically important genes for Gujarati Indians in Houston (GIH) and Indian Tel...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Neeraj Bharti, Ruma Banerjee, Archana Achalere, Sunitha Manjari Kasibhatla, Rajendra Joshi
Formato: article
Lenguaje:EN
Publicado: PeerJ Inc. 2021
Materias:
GIH
ITU
R
Acceso en línea:https://doaj.org/article/f830bd248e5d4731844d7a9f9557d854
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:f830bd248e5d4731844d7a9f9557d854
record_format dspace
spelling oai:doaj.org-article:f830bd248e5d4731844d7a9f9557d8542021-11-12T15:05:06ZGenetic diversity of ‘Very Important Pharmacogenes’ in two South-Asian populations10.7717/peerj.122942167-8359https://doaj.org/article/f830bd248e5d4731844d7a9f9557d8542021-11-01T00:00:00Zhttps://peerj.com/articles/12294.pdfhttps://peerj.com/articles/12294/https://doaj.org/toc/2167-8359Objectives Reliable identification of population-specific variants is important for building the single nucleotide polymorphism (SNP) profile. In this study, genomic variation using allele frequency differences of pharmacologically important genes for Gujarati Indians in Houston (GIH) and Indian Telugu in the U.K. (ITU) from the 1000 Genomes Project vis-à-vis global population data was studied to understand its role in drug response. Methods Joint genotyping approach was used to derive variants of GIH and ITU independently. SNPs of both these populations with significant allele frequency variation (minor allele frequency ≥ 0.05) with super-populations from the 1000 Genomes Project and gnomAD based on Chi-square distribution with p-value of ≤ 0.05 and Bonferroni’s multiple adjustment tests were identified. Population stratification and fixation index analysis was carried out to understand genetic differentiation. Functional annotation of variants was carried out using SnpEff, VEP and CADD score. Results Population stratification of VIP genes revealed four clusters viz., single cluster of GIH and ITU, one cluster each of East Asian, European, African populations and Admixed American was found to be admixed. A total of 13 SNPs belonging to ten pharmacogenes were identified to have significant allele frequency variation in both GIH and ITU populations as compared to one or more super-populations. These SNPs belong to VKORC1 (rs17708472, rs2359612, rs8050894) involved in Vitamin K cycle, cytochrome P450 isoforms CYP2C9 (rs1057910), CYP2B6 (rs3211371), CYP2A2 (rs4646425) and CYP2A4 (rs4646440); ATP-binding cassette (ABC) transporter ABCB1 (rs12720067), DPYD1 (rs12119882, rs56160474) involved in pyrimidine metabolism, methyltransferase COMT (rs9332377) and transcriptional factor NR1I2 (rs6785049). SNPs rs1544410 (VDR), rs2725264 (ABCG2), rs5215 and rs5219 (KCNJ11) share high fixation index (≥ 0.5) with either EAS/AFR populations. Missense variants rs1057910 (CYP2C9), rs1801028 (DRD2) and rs1138272 (GSTP1), rs116855232 (NUDT15); intronic variants rs1131341 (NQO1) and rs115349832 (DPYD) are identified to be ‘deleterious’. Conclusions Analysis of SNPs pertaining to pharmacogenes in GIH and ITU populations using population structure, fixation index and allele frequency variation provides a premise for understanding the role of genetic diversity in drug response in Asian Indians.Neeraj BhartiRuma BanerjeeArchana AchalereSunitha Manjari KasibhatlaRajendra JoshiPeerJ Inc.articleGIHITU1000 Genomes ProjectgnomADSNPsAllele frequencyMedicineRENPeerJ, Vol 9, p e12294 (2021)
institution DOAJ
collection DOAJ
language EN
topic GIH
ITU
1000 Genomes Project
gnomAD
SNPs
Allele frequency
Medicine
R
spellingShingle GIH
ITU
1000 Genomes Project
gnomAD
SNPs
Allele frequency
Medicine
R
Neeraj Bharti
Ruma Banerjee
Archana Achalere
Sunitha Manjari Kasibhatla
Rajendra Joshi
Genetic diversity of ‘Very Important Pharmacogenes’ in two South-Asian populations
description Objectives Reliable identification of population-specific variants is important for building the single nucleotide polymorphism (SNP) profile. In this study, genomic variation using allele frequency differences of pharmacologically important genes for Gujarati Indians in Houston (GIH) and Indian Telugu in the U.K. (ITU) from the 1000 Genomes Project vis-à-vis global population data was studied to understand its role in drug response. Methods Joint genotyping approach was used to derive variants of GIH and ITU independently. SNPs of both these populations with significant allele frequency variation (minor allele frequency ≥ 0.05) with super-populations from the 1000 Genomes Project and gnomAD based on Chi-square distribution with p-value of ≤ 0.05 and Bonferroni’s multiple adjustment tests were identified. Population stratification and fixation index analysis was carried out to understand genetic differentiation. Functional annotation of variants was carried out using SnpEff, VEP and CADD score. Results Population stratification of VIP genes revealed four clusters viz., single cluster of GIH and ITU, one cluster each of East Asian, European, African populations and Admixed American was found to be admixed. A total of 13 SNPs belonging to ten pharmacogenes were identified to have significant allele frequency variation in both GIH and ITU populations as compared to one or more super-populations. These SNPs belong to VKORC1 (rs17708472, rs2359612, rs8050894) involved in Vitamin K cycle, cytochrome P450 isoforms CYP2C9 (rs1057910), CYP2B6 (rs3211371), CYP2A2 (rs4646425) and CYP2A4 (rs4646440); ATP-binding cassette (ABC) transporter ABCB1 (rs12720067), DPYD1 (rs12119882, rs56160474) involved in pyrimidine metabolism, methyltransferase COMT (rs9332377) and transcriptional factor NR1I2 (rs6785049). SNPs rs1544410 (VDR), rs2725264 (ABCG2), rs5215 and rs5219 (KCNJ11) share high fixation index (≥ 0.5) with either EAS/AFR populations. Missense variants rs1057910 (CYP2C9), rs1801028 (DRD2) and rs1138272 (GSTP1), rs116855232 (NUDT15); intronic variants rs1131341 (NQO1) and rs115349832 (DPYD) are identified to be ‘deleterious’. Conclusions Analysis of SNPs pertaining to pharmacogenes in GIH and ITU populations using population structure, fixation index and allele frequency variation provides a premise for understanding the role of genetic diversity in drug response in Asian Indians.
format article
author Neeraj Bharti
Ruma Banerjee
Archana Achalere
Sunitha Manjari Kasibhatla
Rajendra Joshi
author_facet Neeraj Bharti
Ruma Banerjee
Archana Achalere
Sunitha Manjari Kasibhatla
Rajendra Joshi
author_sort Neeraj Bharti
title Genetic diversity of ‘Very Important Pharmacogenes’ in two South-Asian populations
title_short Genetic diversity of ‘Very Important Pharmacogenes’ in two South-Asian populations
title_full Genetic diversity of ‘Very Important Pharmacogenes’ in two South-Asian populations
title_fullStr Genetic diversity of ‘Very Important Pharmacogenes’ in two South-Asian populations
title_full_unstemmed Genetic diversity of ‘Very Important Pharmacogenes’ in two South-Asian populations
title_sort genetic diversity of ‘very important pharmacogenes’ in two south-asian populations
publisher PeerJ Inc.
publishDate 2021
url https://doaj.org/article/f830bd248e5d4731844d7a9f9557d854
work_keys_str_mv AT neerajbharti geneticdiversityofveryimportantpharmacogenesintwosouthasianpopulations
AT rumabanerjee geneticdiversityofveryimportantpharmacogenesintwosouthasianpopulations
AT archanaachalere geneticdiversityofveryimportantpharmacogenesintwosouthasianpopulations
AT sunithamanjarikasibhatla geneticdiversityofveryimportantpharmacogenesintwosouthasianpopulations
AT rajendrajoshi geneticdiversityofveryimportantpharmacogenesintwosouthasianpopulations
_version_ 1718430410025730048