Multivariate Extreme Learning Machine Based AutoEncoder for Electricity Consumption Series Clustering
Multivariate electricity consumption series clustering can reflect the trend of power consumption changes in the past time period, which can provide reliable guidance for electricity production. The dimensionality reduction-based method is an effective technology to address this problem, which obtai...
Guardado en:
Autores principales: | Kaihong Zheng, Jingfeng Yang, Qihang Gong, Shangli Zhou, Lukun Zeng, Sheng Li |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
IEEE
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/f8311cedd9ce472588441afd33766417 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Causality Distance Measures for Multivariate Time Series with Applications
por: Achilleas Anastasiou, et al.
Publicado: (2021) -
Highly Accurate Short-Term Gas Consumption and Elapsed Time Forecasting Using Multi-Channel Deep Neural Network
por: Yeonjee Choi, et al.
Publicado: (2021) -
Structural variations in remnants of Mixed Ombrophilous Forest in the extreme South of Brazil
por: Guarienti Rorato,Daniele, et al.
Publicado: (2020) -
Anomaly sign detection by monitoring thousands of process values using a two-stage autoencoder
por: Susumu NAITO, et al.
Publicado: (2021) -
Fast Sequential Clustering in Riemannian Manifolds for Dynamic and Time-Series-Annotated Multilayer Networks
por: Cong Ye, et al.
Publicado: (2021)