Comparison of hydrological model ensemble forecasting based on multiple members and ensemble methods
Ensemble hydrologic forecasting which takes advantages of multiple hydrologic models has made much contribution to water resource management. In this study, four hydrological models (the Xin’anjiang model (XAJ), Simhyd, GR4J, and artificial neural network (ANN) models) and three ensemble methods (th...
Guardado en:
Autores principales: | Wang Jie, Wang Guoqing, Elmahdi Amgad, Bao Zhenxin, Yang Qinli, Shu Zhangkang, Song Mingming |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
De Gruyter
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/f834d02144124745835ed37488c39ae9 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Design of Ensemble Forecasting Models for Home Energy Management Systems
por: Karol Bot, et al.
Publicado: (2021) -
Water Flow Forecasting Based on River Tributaries Using Long Short-Term Memory Ensemble Model
por: Diogo F. Costa Silva, et al.
Publicado: (2021) -
Improving Forecast Reliability for Geographically Distributed Photovoltaic Generations
por: Daisuke Kodaira, et al.
Publicado: (2021) -
Mitigating Atmospheric Effects in InSAR Stacking Based on Ensemble Forecasting with a Numerical Weather Prediction Model
por: Fangjia Dou, et al.
Publicado: (2021) -
Evaluation of Nine Operational Models in Forecasting Different Types of Synoptic Dust Events in the Middle East
por: Sara Karami, et al.
Publicado: (2021)