Enantiomer Superpositions from Matter-Wave Interference of Chiral Molecules

Molecular matter-wave interferometry enables novel strategies for manipulating the internal mechanical motion of complex molecules. Here, we show how chiral molecules can be prepared in a quantum superposition of two enantiomers by far-field matter-wave diffraction and how the resulting tunneling dy...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Benjamin A. Stickler, Mira Diekmann, Robert Berger, Daqing Wang
Formato: article
Lenguaje:EN
Publicado: American Physical Society 2021
Materias:
Acceso en línea:https://doaj.org/article/f84b05b60df347ff92e24939aa4f1a9e
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
Descripción
Sumario:Molecular matter-wave interferometry enables novel strategies for manipulating the internal mechanical motion of complex molecules. Here, we show how chiral molecules can be prepared in a quantum superposition of two enantiomers by far-field matter-wave diffraction and how the resulting tunneling dynamics can be observed. We determine the impact of rovibrational phase averaging and propose a setup for sensing enantiomer-dependent forces, parity-violating weak interactions, and environment-induced superselection of handedness, as suggested to resolve Hund’s paradox. Using ab initio tunneling calculations, we identify [4]-helicene derivatives as promising candidates to implement the proposal with state-of-the-art techniques. This work opens the door for quantum sensing with chiral molecules.