Budget constrained machine learning for early prediction of adverse outcomes for COVID-19 patients
Abstract The combination of machine learning (ML) and electronic health records (EHR) data may be able to improve outcomes of hospitalized COVID-19 patients through improved risk stratification and patient outcome prediction. However, in resource constrained environments the clinical utility of such...
Guardado en:
Autores principales: | Sam Nguyen, Ryan Chan, Jose Cadena, Braden Soper, Paul Kiszka, Lucas Womack, Mark Work, Joan M. Duggan, Steven T. Haller, Jennifer A. Hanrahan, David J. Kennedy, Deepa Mukundan, Priyadip Ray |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/f84bcc357880499c918c1874c4e4b670 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Equity in the public budget
por: Martin, Juan
Publicado: (2014) -
SOME QUESTIONS ABOUT DEPENDENCE OF THE FEDERAL BUDGET BALANCE ON THE QUALITY OF BUDGET PLANNING
por: G. N. Kutsuri
Publicado: (2020) -
DESIGNING THE SYSTEM OF TARGET INDICATORS AND FIGURES OF BUDGET EXPENDITURE EFFICIENCY AS AN ELEMENT OF BUDGET POLICY
por: Alena S. Chuvakova
Publicado: (2017) -
Blockchains for constrained edge devices
por: Antonyo Douglas, et al.
Publicado: (2020) -
Revised budget of the CCST for 1983
Publicado: (2014)