Macromodeling High-Speed Circuit Data Using Rational Krylov Fitting Method

This paper presents the modeling of high speed distributed networks characterized by S-parameters frequency data using the rational Krylov fitting (RKFIT) algorithm. Numerical examples illustrate the effectiveness of the method to compute stable rational approximation that fit given S-parameters dat...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Mohamed Sahouli, Anestis Dounavis
Formato: article
Lenguaje:EN
Publicado: MDPI AG 2021
Materias:
T
Acceso en línea:https://doaj.org/article/f84bf4e4ca334491b67ef29e73c0fbd4
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:f84bf4e4ca334491b67ef29e73c0fbd4
record_format dspace
spelling oai:doaj.org-article:f84bf4e4ca334491b67ef29e73c0fbd42021-11-11T16:02:58ZMacromodeling High-Speed Circuit Data Using Rational Krylov Fitting Method10.3390/en142173181996-1073https://doaj.org/article/f84bf4e4ca334491b67ef29e73c0fbd42021-11-01T00:00:00Zhttps://www.mdpi.com/1996-1073/14/21/7318https://doaj.org/toc/1996-1073This paper presents the modeling of high speed distributed networks characterized by S-parameters frequency data using the rational Krylov fitting (RKFIT) algorithm. Numerical examples illustrate the effectiveness of the method to compute stable rational approximation that fit given S-parameters data. In addition, it is shown that RKFIT has some advantages when compared to the well-established Vector Fitting (VF) method, such as more accurate fitting, less dependence on the choice of the initial poles of the algorithm, and faster convergence. Numerical examples are implemented using RKFIT and the results are compared with VF and the Loewner Matrix (LM) algorithm.Mohamed SahouliAnestis DounavisMDPI AGarticledistributed networksmacromodelingrational approximations-parametersvector fittingTechnologyTENEnergies, Vol 14, Iss 7318, p 7318 (2021)
institution DOAJ
collection DOAJ
language EN
topic distributed networks
macromodeling
rational approximation
s-parameters
vector fitting
Technology
T
spellingShingle distributed networks
macromodeling
rational approximation
s-parameters
vector fitting
Technology
T
Mohamed Sahouli
Anestis Dounavis
Macromodeling High-Speed Circuit Data Using Rational Krylov Fitting Method
description This paper presents the modeling of high speed distributed networks characterized by S-parameters frequency data using the rational Krylov fitting (RKFIT) algorithm. Numerical examples illustrate the effectiveness of the method to compute stable rational approximation that fit given S-parameters data. In addition, it is shown that RKFIT has some advantages when compared to the well-established Vector Fitting (VF) method, such as more accurate fitting, less dependence on the choice of the initial poles of the algorithm, and faster convergence. Numerical examples are implemented using RKFIT and the results are compared with VF and the Loewner Matrix (LM) algorithm.
format article
author Mohamed Sahouli
Anestis Dounavis
author_facet Mohamed Sahouli
Anestis Dounavis
author_sort Mohamed Sahouli
title Macromodeling High-Speed Circuit Data Using Rational Krylov Fitting Method
title_short Macromodeling High-Speed Circuit Data Using Rational Krylov Fitting Method
title_full Macromodeling High-Speed Circuit Data Using Rational Krylov Fitting Method
title_fullStr Macromodeling High-Speed Circuit Data Using Rational Krylov Fitting Method
title_full_unstemmed Macromodeling High-Speed Circuit Data Using Rational Krylov Fitting Method
title_sort macromodeling high-speed circuit data using rational krylov fitting method
publisher MDPI AG
publishDate 2021
url https://doaj.org/article/f84bf4e4ca334491b67ef29e73c0fbd4
work_keys_str_mv AT mohamedsahouli macromodelinghighspeedcircuitdatausingrationalkrylovfittingmethod
AT anestisdounavis macromodelinghighspeedcircuitdatausingrationalkrylovfittingmethod
_version_ 1718432451866394624