Distilled-MobileNet Model of Convolutional Neural Network Simplified Structure for Plant Disease Recognition
The development of convolutional neural networks(CNN) has brought a large number of network parameters and huge model volumes, which greatly limites the application on devices with small computing resources, such as single-chip microcomputers and mobile devices. In order to solve the problem, a stru...
Enregistré dans:
Auteurs principaux: | QIU Wenjie, YE Jin, HU Liangqing, YANG Juan, LI Qili, MO Jianyou, YI Wanmao |
---|---|
Format: | article |
Langue: | EN ZH |
Publié: |
Editorial Office of Smart Agriculture
2021
|
Sujets: | |
Accès en ligne: | https://doaj.org/article/f84d60be63634dc9b10de6e32d98663f |
Tags: |
Ajouter un tag
Pas de tags, Soyez le premier à ajouter un tag!
|
Documents similaires
-
An Efficient Approach Using Knowledge Distillation Methods to Stabilize Performance in a Lightweight Top-Down Posture Estimation Network
par: Changhyun Park, et autres
Publié: (2021) -
Knowledge Distillation of Grassmann Manifold Network for Remote Sensing Scene Classification
par: Ling Tian, et autres
Publié: (2021) -
Review of Image Classification Algorithms Based on Convolutional Neural Networks
par: Leiyu Chen, et autres
Publié: (2021) -
Multisensor Land Cover Classification With Sparsely Annotated Data Based on Convolutional Neural Networks and Self-Distillation
par: Yawogan Jean Eudes Gbodjo, et autres
Publié: (2021) -
AEDCN-Net: Accurate and Efficient Deep Convolutional Neural Network Model for Medical Image Segmentation
par: Bekhzod Olimov, et autres
Publié: (2021)