Floccular fossa size is not a reliable proxy of ecology and behaviour in vertebrates
Abstract The cerebellar floccular and parafloccular lobes are housed in fossae of the periotic region of the skull of different vertebrates. Experimental evidence indicates that the lobes integrate visual and vestibular information and control the vestibulo-ocular reflex, vestibulo-collic reflex, sm...
Guardado en:
Autores principales: | , , , , , , , , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2017
|
Materias: | |
Acceso en línea: | https://doaj.org/article/f84f993722484da18e70245779ac1882 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Sumario: | Abstract The cerebellar floccular and parafloccular lobes are housed in fossae of the periotic region of the skull of different vertebrates. Experimental evidence indicates that the lobes integrate visual and vestibular information and control the vestibulo-ocular reflex, vestibulo-collic reflex, smooth pursuit and gaze holding. Multiple paleoneuroanatomy studies have deduced the behaviour of fossil vertebrates by measuring the floccular fossae (FF). These studies assumed that there are correlations between FF volume and behaviour. However, these assumptions have not been fully tested. Here, we used micro-CT scans of extant mammals (47 species) and birds (59 species) to test six possible morphological-functional associations between FF volume and ecological/behavioural traits of extant animals. Behaviour and ecology do not explain FF volume variability in four out of six variables tested. Two variables with significant results require further empirical testing. Cerebellum plasticity may explain the lack of statistical evidence for the hypotheses tested. Therefore, variation in FF volume seems to be better explained by a combination of factors such as anatomical and phylogenetic evolutionary constraints, and further empirical testing is required. |
---|