Machine learning‐based automated fungal cell counting under a complicated background with ilastik and ImageJ
Abstract Measuring the concentration and viability of fungal cells is an important and fundamental procedure in scientific research and industrial fermentation. In consideration of the drawbacks of manual cell counting, large quantities of fungal cells require methods that provide easy, objective an...
Guardado en:
Autores principales: | Chenxi Li, Xiaoyu Ma, Jing Deng, Jiajia Li, Yanjie Liu, Xudong Zhu, Jin Liu, Ping Zhang |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Wiley-VCH
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/f8535fa64b4743b195f5be0fed9ebaf6 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
State of the art, recent advances, and challenges in the field of fungal mycelium materials: a snapshot of the 2021 Mini Meeting
por: Noam Attias, et al.
Publicado: (2021) -
Optimization of lipase production using fungal isolates from oily residues
por: Leticia Miranda Cesário, et al.
Publicado: (2021) -
A review on architecture with fungal biomaterials: the desired and the feasible
por: Dimitra Almpani-Lekka, et al.
Publicado: (2021) -
Trichoderma citrinoviride: Anti-Fungal Biosurfactants Production Characteristics
por: Michał Piegza, et al.
Publicado: (2021) -
Genomics Characterization of an Engineered Corynebacterium glutamicum in Bioreactor Cultivation Under Ionic Liquid Stress
por: Deepanwita Banerjee, et al.
Publicado: (2021)