Metal–peptide rings form highly entangled topologically inequivalent frameworks with the same ring- and crossing-numbers
For interlocking ring structures, knot theory predicts that the number of topologically different links increases with ring and crossing number. Here, the authors use a peptide folding-and-assembly strategy to selectively realize two highly entangled catenanes with 4 rings and 12 crossings, represen...
Guardado en:
| Autores principales: | , , , , , |
|---|---|
| Formato: | article |
| Lenguaje: | EN |
| Publicado: |
Nature Portfolio
2019
|
| Materias: | |
| Acceso en línea: | https://doaj.org/article/f85555a38c764ff59bba5713c9780de9 |
| Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
| Sumario: | For interlocking ring structures, knot theory predicts that the number of topologically different links increases with ring and crossing number. Here, the authors use a peptide folding-and-assembly strategy to selectively realize two highly entangled catenanes with 4 rings and 12 crossings, representing two of the 100 predicted topologies with this complexity. |
|---|