A machine learning based two-stage clinical decision support system for predicting patients’ discontinuation from opioid use disorder treatment: retrospective observational study
Abstract Background Buprenorphine is a widely used treatment option for patients with opioid use disorder (OUD). Premature discontinuation from this treatment has many negative health and societal consequences. Objective To develop and evaluate a machine learning based two-stage clinical decision-ma...
Guardado en:
Autores principales: | Md Mahmudul Hasan, Gary J. Young, Jiesheng Shi, Prathamesh Mohite, Leonard D. Young, Scott G. Weiner, Md. Noor-E-Alam |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
BMC
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/f861b66740da49bf8a84e2631a4608cf |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Internet search and medicaid prescription drug data as predictors of opioid emergency department visits
por: Sean D. Young, et al.
Publicado: (2021) -
Deep-learning-based synthesis of post-contrast T1-weighted MRI for tumour response assessment in neuro-oncology: a multicentre, retrospective cohort study
por: Chandrakanth Jayachandran Preetha, MSc, et al.
Publicado: (2021) -
Statistical uncertainty quantification to augment clinical decision support: a first implementation in sleep medicine
por: Dae Y. Kang, et al.
Publicado: (2021) -
Do as AI say: susceptibility in deployment of clinical decision-aids
por: Susanne Gaube, et al.
Publicado: (2021) -
Dynamic prediction of renal survival among deeply phenotyped kidney transplant recipients using artificial intelligence: an observational, international, multicohort study
por: Marc Raynaud, PhD, et al.
Publicado: (2021)