Evaluating the origin and virulence of a Helicobacter pylori cagA-positive strain isolated from a non-human primate
Abstract Helicobacter pylori cagA-positive strains are critically involved in the development of gastric cancer. Upon delivery into gastric epithelial cells via type IV secretion, the cagA-encoded CagA interacts with and thereby perturbs the pro-oncogenic phosphatase SHP2 and the polarity-regulating...
Guardado en:
Autores principales: | , , , , , , , , , , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2018
|
Materias: | |
Acceso en línea: | https://doaj.org/article/f8666df3919444ac8c305271f76849db |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Sumario: | Abstract Helicobacter pylori cagA-positive strains are critically involved in the development of gastric cancer. Upon delivery into gastric epithelial cells via type IV secretion, the cagA-encoded CagA interacts with and thereby perturbs the pro-oncogenic phosphatase SHP2 and the polarity-regulating kinase PAR1b via the tyrosine-phosphorylated EPIYA-C/D segment and the CM sequence, respectively. Importantly, sequences spanning these binding regions exhibit variations among CagA proteins, which influence the pathobiological/oncogenic potential of individual CagA. Here we isolated an H. pylori strain (Hp_TH2099) naturally infecting the stomach of a housed macaque, indicating a zoonotic feature of H. pylori infection. Whole genome sequence analysis revealed that Hp_TH2099 belongs to the hpAsia2 cluster and possesses ABC-type Western CagA, which contains hitherto unreported variations in both EPIYA-C and CM sequences. The CM variations almost totally abolished PAR1b binding. Whereas pTyr + 5 variation in the EPIYA-C segment potentiated SHP2-binding affinity, pTyr-2 variation dampened CagA tyrosine phosphorylation and thus impeded CagA-SHP2 complex formation. As opposed to the H. pylori standard strain, infection of mouse ES cell-derived gastric organoids with Hp_TH2099 failed to elicit CagA-dependent epithelial destruction. Thus, the macaque-isolated H. pylori showed low virulence due to attenuated CagA activity through multiple substitutions in the sequences involved in binding with SHP2 and PAR1b. |
---|