Increase in rear-end collision risk by acute stress-induced fatigue in on-road truck driving.

Increasing road crashes related to occupational drivers' deteriorating health has become a social problem. To prevent road crashes, warnings and predictions of increased crash risk based on drivers' conditions are important. However, in on-road driving, the relationship between drivers...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Shunsuke Minusa, Kei Mizuno, Daichi Ojiro, Takeshi Tanaka, Hiroyuki Kuriyama, Emi Yamano, Hirohiko Kuratsune, Yasuyoshi Watanabe
Formato: article
Lenguaje:EN
Publicado: Public Library of Science (PLoS) 2021
Materias:
R
Q
Acceso en línea:https://doaj.org/article/f86b02cbcdd542fa84b46736637743fc
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
Descripción
Sumario:Increasing road crashes related to occupational drivers' deteriorating health has become a social problem. To prevent road crashes, warnings and predictions of increased crash risk based on drivers' conditions are important. However, in on-road driving, the relationship between drivers' physiological condition and crash risk remains unclear due to difficulties in the simultaneous measurement of both. This study aimed to elucidate the relationship between drivers' physiological condition assessed by autonomic nerve function (ANF) and an indicator of rear-end collision risk in on-road driving. Data from 20 male truck drivers (mean ± SD, 49.0±8.2 years; range, 35-63 years) were analyzed. Over a period of approximately three months, drivers' working behavior data, such as automotive sensor data, and their ANF data were collected during their working shift. Using the gradient boosting decision tree method, a rear-end collision risk index was developed based on the working behavior data, which enabled continuous risk quantification. Using the developed risk index and drivers' ANF data, effects of their physiological condition on risk were analyzed employing a logistic quantile regression method, which provides wider information on the effects of the explanatory variables, after hierarchical model selection. Our results revealed that in on-road driving, activation of sympathetic nerve activity and inhibition of parasympathetic nerve activity increased each quantile of the rear-end collision risk index. The findings suggest that acute stress-induced drivers' fatigue increases rear-end collision risk. Hence, in on-road driving, drivers' physiological condition monitoring and ANF-based stress warning and relief system can contribute to promoting the prevention of rear-end truck collisions.