Impedance spectroscopy study of the AC conductivity of sodium superoxide nanoparticles doped vanadate based glasses
In the present work, we successfully prepared sodium superoxide (NaO2) doped vanadium phosphate borate glasses using normal melt quenching technique of composition 60V2O5–5P2O5–(35-x) B2O3–xNaO2, x = 0, 10, 15 and 20 mol %. The foremost objective of this work is to explore the transport properties...
Guardado en:
Autores principales: | , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
KeAi Communications Co., Ltd.
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/f87cd903fb8745cc8eac0f6b4ea77e71 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:doaj.org-article:f87cd903fb8745cc8eac0f6b4ea77e71 |
---|---|
record_format |
dspace |
spelling |
oai:doaj.org-article:f87cd903fb8745cc8eac0f6b4ea77e712021-11-30T04:17:01ZImpedance spectroscopy study of the AC conductivity of sodium superoxide nanoparticles doped vanadate based glasses2589-299110.1016/j.mset.2021.06.004https://doaj.org/article/f87cd903fb8745cc8eac0f6b4ea77e712021-01-01T00:00:00Zhttp://www.sciencedirect.com/science/article/pii/S2589299121000197https://doaj.org/toc/2589-2991In the present work, we successfully prepared sodium superoxide (NaO2) doped vanadium phosphate borate glasses using normal melt quenching technique of composition 60V2O5–5P2O5–(35-x) B2O3–xNaO2, x = 0, 10, 15 and 20 mol %. The foremost objective of this work is to explore the transport properties of sodium superoxide doped vanadium phosphate borate glasses. The impedance spectroscopy was employed to investigate transport properties of all glass systems under study. The AC conductivity for all glass systems were investigated in temperature range 308–473 K. The Jonscher's power law found to be fit with conductivity data, which decrease with temperature and satisfies the criteria of the correlated hopping model. The activation energy (Ea) estimated from the Arrhenius plot and it is observed to be 0.12 eV.R.V. BardeK.R. NemadeS.A. WaghuleyKeAi Communications Co., Ltd.articleSodium superoxideNyquist plotsElectrical conductivityImpedance spectroscopyHopping distanceMaterials of engineering and construction. Mechanics of materialsTA401-492Energy conservationTJ163.26-163.5ENMaterials Science for Energy Technologies, Vol 4, Iss , Pp 202-207 (2021) |
institution |
DOAJ |
collection |
DOAJ |
language |
EN |
topic |
Sodium superoxide Nyquist plots Electrical conductivity Impedance spectroscopy Hopping distance Materials of engineering and construction. Mechanics of materials TA401-492 Energy conservation TJ163.26-163.5 |
spellingShingle |
Sodium superoxide Nyquist plots Electrical conductivity Impedance spectroscopy Hopping distance Materials of engineering and construction. Mechanics of materials TA401-492 Energy conservation TJ163.26-163.5 R.V. Barde K.R. Nemade S.A. Waghuley Impedance spectroscopy study of the AC conductivity of sodium superoxide nanoparticles doped vanadate based glasses |
description |
In the present work, we successfully prepared sodium superoxide (NaO2) doped vanadium phosphate borate glasses using normal melt quenching technique of composition 60V2O5–5P2O5–(35-x) B2O3–xNaO2, x = 0, 10, 15 and 20 mol %. The foremost objective of this work is to explore the transport properties of sodium superoxide doped vanadium phosphate borate glasses. The impedance spectroscopy was employed to investigate transport properties of all glass systems under study. The AC conductivity for all glass systems were investigated in temperature range 308–473 K. The Jonscher's power law found to be fit with conductivity data, which decrease with temperature and satisfies the criteria of the correlated hopping model. The activation energy (Ea) estimated from the Arrhenius plot and it is observed to be 0.12 eV. |
format |
article |
author |
R.V. Barde K.R. Nemade S.A. Waghuley |
author_facet |
R.V. Barde K.R. Nemade S.A. Waghuley |
author_sort |
R.V. Barde |
title |
Impedance spectroscopy study of the AC conductivity of sodium superoxide nanoparticles doped vanadate based glasses |
title_short |
Impedance spectroscopy study of the AC conductivity of sodium superoxide nanoparticles doped vanadate based glasses |
title_full |
Impedance spectroscopy study of the AC conductivity of sodium superoxide nanoparticles doped vanadate based glasses |
title_fullStr |
Impedance spectroscopy study of the AC conductivity of sodium superoxide nanoparticles doped vanadate based glasses |
title_full_unstemmed |
Impedance spectroscopy study of the AC conductivity of sodium superoxide nanoparticles doped vanadate based glasses |
title_sort |
impedance spectroscopy study of the ac conductivity of sodium superoxide nanoparticles doped vanadate based glasses |
publisher |
KeAi Communications Co., Ltd. |
publishDate |
2021 |
url |
https://doaj.org/article/f87cd903fb8745cc8eac0f6b4ea77e71 |
work_keys_str_mv |
AT rvbarde impedancespectroscopystudyoftheacconductivityofsodiumsuperoxidenanoparticlesdopedvanadatebasedglasses AT krnemade impedancespectroscopystudyoftheacconductivityofsodiumsuperoxidenanoparticlesdopedvanadatebasedglasses AT sawaghuley impedancespectroscopystudyoftheacconductivityofsodiumsuperoxidenanoparticlesdopedvanadatebasedglasses |
_version_ |
1718406781395271680 |