A characterization of ruled hypersurfaces in complex space forms in terms of the Lie derivative of shape operator

In this paper, it is proved that if a non-Hopf real hypersurface in a nonflat complex space form of complex dimension two satisfies Ki and Suh's condition (J. Korean Math. Soc., 32 (1995), 161–170), then it is locally congruent to a ruled hypersurface or a strongly 2-Hopf hypersurface. This ext...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autor principal: Wenjie Wang
Formato: article
Lenguaje:EN
Publicado: AIMS Press 2021
Materias:
Acceso en línea:https://doaj.org/article/f8946e9e60d747f1ac37779b7dfbd371
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
Descripción
Sumario:In this paper, it is proved that if a non-Hopf real hypersurface in a nonflat complex space form of complex dimension two satisfies Ki and Suh's condition (J. Korean Math. Soc., 32 (1995), 161–170), then it is locally congruent to a ruled hypersurface or a strongly 2-Hopf hypersurface. This extends Ki and Suh's theorem to real hypersurfaces of dimension greater than or equal to three.