A characterization of ruled hypersurfaces in complex space forms in terms of the Lie derivative of shape operator
In this paper, it is proved that if a non-Hopf real hypersurface in a nonflat complex space form of complex dimension two satisfies Ki and Suh's condition (J. Korean Math. Soc., 32 (1995), 161–170), then it is locally congruent to a ruled hypersurface or a strongly 2-Hopf hypersurface. This ext...
Guardado en:
Autor principal: | |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
AIMS Press
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/f8946e9e60d747f1ac37779b7dfbd371 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Sumario: | In this paper, it is proved that if a non-Hopf real hypersurface in a nonflat complex space form of complex dimension two satisfies Ki and Suh's condition (J. Korean Math. Soc., 32 (1995), 161–170), then it is locally congruent to a ruled hypersurface or a strongly 2-Hopf hypersurface. This extends Ki and Suh's theorem to real hypersurfaces of dimension greater than or equal to three. |
---|