A characterization of ruled hypersurfaces in complex space forms in terms of the Lie derivative of shape operator
In this paper, it is proved that if a non-Hopf real hypersurface in a nonflat complex space form of complex dimension two satisfies Ki and Suh's condition (J. Korean Math. Soc., 32 (1995), 161–170), then it is locally congruent to a ruled hypersurface or a strongly 2-Hopf hypersurface. This ext...
Guardado en:
Autor principal: | Wenjie Wang |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
AIMS Press
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/f8946e9e60d747f1ac37779b7dfbd371 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Weakly convex hypersurfaces of pseudo-Euclidean spaces satisfying the condition L k H k+1 = λH k+1
por: Pashaie,Firooz
Publicado: (2021) -
Complete CSC Hypersurfaces Satisfying an Okumura-Type Inequality in Ricci Symmetric Manifolds
por: Xun Xie, et al.
Publicado: (2021) -
Lightlike Geometry of Leaves in Indefinite Kenmotsu Manifolds
por: Massamba,Fortuné
Publicado: (2011) -
Lagrangian geometry of the Gauss images of isoparametric hypersurfaces in spheres
por: Miyaoka Reiko, et al.
Publicado: (2019) -
Null controllability on Lie groups
por: Ayala,Víctor, et al.
Publicado: (2013)