A Universal Separable Diversity

The Urysohn space is a separable complete metric space with two fundamental properties: (a) universality: every separable metric space can be isometrically embedded in it; (b) ultrahomogeneity: every finite isometry between two finite subspaces can be extended to an auto-isometry of the whole space....

Full description

Saved in:
Bibliographic Details
Main Authors: Bryant David, Nies André, Tupper Paul
Format: article
Language:EN
Published: De Gruyter 2017
Subjects:
Online Access:https://doaj.org/article/f8be5f5af176464ebff761d35c410a9d
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The Urysohn space is a separable complete metric space with two fundamental properties: (a) universality: every separable metric space can be isometrically embedded in it; (b) ultrahomogeneity: every finite isometry between two finite subspaces can be extended to an auto-isometry of the whole space. The Urysohn space is uniquely determined up to isometry within separable metric spaces by these two properties. We introduce an analogue of the Urysohn space for diversities, a recently developed variant of the concept of a metric space. In a diversity any finite set of points is assigned a non-negative value, extending the notion of a metric which only applies to unordered pairs of points.We construct the unique separable complete diversity that it is ultrahomogeneous and universal with respect to separable diversities.