A Universal Separable Diversity
The Urysohn space is a separable complete metric space with two fundamental properties: (a) universality: every separable metric space can be isometrically embedded in it; (b) ultrahomogeneity: every finite isometry between two finite subspaces can be extended to an auto-isometry of the whole space....
Guardado en:
Autores principales: | , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
De Gruyter
2017
|
Materias: | |
Acceso en línea: | https://doaj.org/article/f8be5f5af176464ebff761d35c410a9d |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:doaj.org-article:f8be5f5af176464ebff761d35c410a9d |
---|---|
record_format |
dspace |
spelling |
oai:doaj.org-article:f8be5f5af176464ebff761d35c410a9d2021-12-05T14:10:38ZA Universal Separable Diversity2299-327410.1515/agms-2017-0008https://doaj.org/article/f8be5f5af176464ebff761d35c410a9d2017-12-01T00:00:00Zhttps://doi.org/10.1515/agms-2017-0008https://doaj.org/toc/2299-3274The Urysohn space is a separable complete metric space with two fundamental properties: (a) universality: every separable metric space can be isometrically embedded in it; (b) ultrahomogeneity: every finite isometry between two finite subspaces can be extended to an auto-isometry of the whole space. The Urysohn space is uniquely determined up to isometry within separable metric spaces by these two properties. We introduce an analogue of the Urysohn space for diversities, a recently developed variant of the concept of a metric space. In a diversity any finite set of points is assigned a non-negative value, extending the notion of a metric which only applies to unordered pairs of points.We construct the unique separable complete diversity that it is ultrahomogeneous and universal with respect to separable diversities.Bryant DavidNies AndréTupper PaulDe Gruyterarticlediversitiesurysohn spacekatetov functionsuniversalityultrahomogeneity51f9954e5054e99AnalysisQA299.6-433ENAnalysis and Geometry in Metric Spaces, Vol 5, Iss 1, Pp 138-151 (2017) |
institution |
DOAJ |
collection |
DOAJ |
language |
EN |
topic |
diversities urysohn space katetov functions universality ultrahomogeneity 51f99 54e50 54e99 Analysis QA299.6-433 |
spellingShingle |
diversities urysohn space katetov functions universality ultrahomogeneity 51f99 54e50 54e99 Analysis QA299.6-433 Bryant David Nies André Tupper Paul A Universal Separable Diversity |
description |
The Urysohn space is a separable complete metric space with two fundamental properties: (a) universality: every separable metric space can be isometrically embedded in it; (b) ultrahomogeneity: every finite isometry between two finite subspaces can be extended to an auto-isometry of the whole space. The Urysohn space is uniquely determined up to isometry within separable metric spaces by these two properties. We introduce an analogue of the Urysohn space for diversities, a recently developed variant of the concept of a metric space. In a diversity any finite set of points is assigned a non-negative value, extending the notion of a metric which only applies to unordered pairs of points.We construct the unique separable complete diversity that it is ultrahomogeneous and universal with respect to separable diversities. |
format |
article |
author |
Bryant David Nies André Tupper Paul |
author_facet |
Bryant David Nies André Tupper Paul |
author_sort |
Bryant David |
title |
A Universal Separable Diversity |
title_short |
A Universal Separable Diversity |
title_full |
A Universal Separable Diversity |
title_fullStr |
A Universal Separable Diversity |
title_full_unstemmed |
A Universal Separable Diversity |
title_sort |
universal separable diversity |
publisher |
De Gruyter |
publishDate |
2017 |
url |
https://doaj.org/article/f8be5f5af176464ebff761d35c410a9d |
work_keys_str_mv |
AT bryantdavid auniversalseparablediversity AT niesandre auniversalseparablediversity AT tupperpaul auniversalseparablediversity AT bryantdavid universalseparablediversity AT niesandre universalseparablediversity AT tupperpaul universalseparablediversity |
_version_ |
1718371875716857856 |