A Universal Separable Diversity
The Urysohn space is a separable complete metric space with two fundamental properties: (a) universality: every separable metric space can be isometrically embedded in it; (b) ultrahomogeneity: every finite isometry between two finite subspaces can be extended to an auto-isometry of the whole space....
Guardado en:
Autores principales: | Bryant David, Nies André, Tupper Paul |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
De Gruyter
2017
|
Materias: | |
Acceso en línea: | https://doaj.org/article/f8be5f5af176464ebff761d35c410a9d |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
so-metrizable spaces and images of metric spaces
por: Yang Songlin, et al.
Publicado: (2021) -
Fuzzy (b, θ)- separation axioms
por: Sarma,Diganta Jyoti, et al.
Publicado: (2019) -
On global classical solutions to one-dimensional compressible Navier–Stokes/Allen–Cahn system with density-dependent viscosity and vacuum
por: Menglong Su
Publicado: (2021) -
New soft separation axioms and fixed soft points with respect to total belong and total non-belong relations
por: Al-shami Tareq M., et al.
Publicado: (2021) -
Traces of Besov, Triebel-Lizorkin and Sobolev Spaces on Metric Spaces
por: Saksman Eero, et al.
Publicado: (2017)