Artificial intelligence matches subjective severity assessment of pneumonia for prediction of patient outcome and need for mechanical ventilation: a cohort study
Abstract To compare the performance of artificial intelligence (AI) and Radiographic Assessment of Lung Edema (RALE) scores from frontal chest radiographs (CXRs) for predicting patient outcomes and the need for mechanical ventilation in COVID-19 pneumonia. Our IRB-approved study included 1367 serial...
Guardado en:
Autores principales: | Shadi Ebrahimian, Fatemeh Homayounieh, Marcio A. B. C. Rockenbach, Preetham Putha, Tarun Raj, Ittai Dayan, Bernardo C. Bizzo, Varun Buch, Dufan Wu, Kyungsang Kim, Quanzheng Li, Subba R. Digumarthy, Mannudeep K. Kalra |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/f8c2b5d978b64d608349f7877ae3ab70 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Deploying Clinical Process Improvement Strategies to Reduce Motion Artifacts and Expiratory Phase Scanning in Chest CT
por: Ruhani Doda Khera, et al.
Publicado: (2019) -
Seasonal color matching method of ornamental plants in urban landscape construction
por: Wang Dayan
Publicado: (2021) -
Deep learning predicts cardiovascular disease risks from lung cancer screening low dose computed tomography
por: Hanqing Chao, et al.
Publicado: (2021) -
Programmed Multi-Level Ventilation: A Strategy for Ventilating Non-Homogenous Lungs
por: Depta F, et al.
Publicado: (2021) -
Risk factors of ventilator-associated pneumonia in elderly patients receiving mechanical ventilation
por: Xu Y, et al.
Publicado: (2019)