Multi-EPL: Accurate multi-source domain adaptation.
Given multiple source datasets with labels, how can we train a target model with no labeled data? Multi-source domain adaptation (MSDA) aims to train a model using multiple source datasets different from a target dataset in the absence of target data labels. MSDA is a crucial problem applicable to m...
Guardado en:
Autores principales: | Seongmin Lee, Hyunsik Jeon, U Kang |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Public Library of Science (PLoS)
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/f8c839edfd0f4b78b96169a1b2fb80cc |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Unsupervised multi-source domain adaptation with no observable source data.
por: Hyunsik Jeon, et al.
Publicado: (2021) -
Target specific functions of EPL interneurons in olfactory circuits
por: Gary Liu, et al.
Publicado: (2019) -
Structural and functional analysis of multi-interface domains.
por: Liang Zhao, et al.
Publicado: (2012) -
An efficient and accurate distributed learning algorithm for modeling multi-site zero-inflated count outcomes
por: Mackenzie J. Edmondson, et al.
Publicado: (2021) -
Accurate SARS-CoV-2 seroprevalence surveys require robust multi-antigen assays
por: Christos Fotis, et al.
Publicado: (2021)