High-resolution mass spectrometry driven discovery of peptidic danger signals in insect immunity.
The 'danger model' is an alternative concept for immune response postulating that the immune system reacts to entities that do damage (danger associated molecular patterns, DAMP) and not only to entities that are foreign (pathogen-associated molecular patterns, PAMP) as proposed by classic...
Guardado en:
Autores principales: | , , , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Public Library of Science (PLoS)
2013
|
Materias: | |
Acceso en línea: | https://doaj.org/article/f8c872d8bdb54919b082141c2f72e445 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:doaj.org-article:f8c872d8bdb54919b082141c2f72e445 |
---|---|
record_format |
dspace |
spelling |
oai:doaj.org-article:f8c872d8bdb54919b082141c2f72e4452021-11-18T08:44:43ZHigh-resolution mass spectrometry driven discovery of peptidic danger signals in insect immunity.1932-620310.1371/journal.pone.0080406https://doaj.org/article/f8c872d8bdb54919b082141c2f72e4452013-01-01T00:00:00Zhttps://www.ncbi.nlm.nih.gov/pmc/articles/pmid/24303012/?tool=EBIhttps://doaj.org/toc/1932-6203The 'danger model' is an alternative concept for immune response postulating that the immune system reacts to entities that do damage (danger associated molecular patterns, DAMP) and not only to entities that are foreign (pathogen-associated molecular patterns, PAMP) as proposed by classical immunology concepts. In this study we used Galleria mellonella to validate the danger model in insects. Hemolymph of G. mellonella was digested with thermolysin (as a representative for virulence-associated metalloproteinases produced by humanpathogens) followed by chromatographic fractionation. Immune-stimulatory activity was tested by measuring lysozyme activity with the lytic zone assays against Micrococcus luteus cell wall components. Peptides were analyzed by nano-scale liquid chromatography coupled to high-resolution Fourier transform mass spectrometers. Addressing the lack of a genome sequence we complemented the rudimentary NCBI protein database with a recently established transcriptome and de novo sequencing methods for peptide identification. This approach led to identification of 127 peptides, 9 of which were identified in bioactive fractions. Detailed MS/MS experiments in comparison with synthetic analogues confirmed the amino acid sequence of all 9 peptides. To test the potential of these putative danger signals to induce immune responses we injected the synthetic analogues into G. mellonella and monitored the anti-bacterial activity against living Micrococcus luteus. Six out of 9 peptides identified in the bioactive fractions exhibited immune-stimulatory activity when injected. Hence, we provide evidence that small peptides resulting from thermolysin-mediated digestion of hemolymph proteins function as endogenous danger signals which can set the immune system into alarm. Consequently, our study indicates that the danger model also plays a role in insect immunity.Arton BerishaKrishnendu MukherjeeAndreas VilcinskasBernhard SpenglerAndreas RömppPublic Library of Science (PLoS)articleMedicineRScienceQENPLoS ONE, Vol 8, Iss 11, p e80406 (2013) |
institution |
DOAJ |
collection |
DOAJ |
language |
EN |
topic |
Medicine R Science Q |
spellingShingle |
Medicine R Science Q Arton Berisha Krishnendu Mukherjee Andreas Vilcinskas Bernhard Spengler Andreas Römpp High-resolution mass spectrometry driven discovery of peptidic danger signals in insect immunity. |
description |
The 'danger model' is an alternative concept for immune response postulating that the immune system reacts to entities that do damage (danger associated molecular patterns, DAMP) and not only to entities that are foreign (pathogen-associated molecular patterns, PAMP) as proposed by classical immunology concepts. In this study we used Galleria mellonella to validate the danger model in insects. Hemolymph of G. mellonella was digested with thermolysin (as a representative for virulence-associated metalloproteinases produced by humanpathogens) followed by chromatographic fractionation. Immune-stimulatory activity was tested by measuring lysozyme activity with the lytic zone assays against Micrococcus luteus cell wall components. Peptides were analyzed by nano-scale liquid chromatography coupled to high-resolution Fourier transform mass spectrometers. Addressing the lack of a genome sequence we complemented the rudimentary NCBI protein database with a recently established transcriptome and de novo sequencing methods for peptide identification. This approach led to identification of 127 peptides, 9 of which were identified in bioactive fractions. Detailed MS/MS experiments in comparison with synthetic analogues confirmed the amino acid sequence of all 9 peptides. To test the potential of these putative danger signals to induce immune responses we injected the synthetic analogues into G. mellonella and monitored the anti-bacterial activity against living Micrococcus luteus. Six out of 9 peptides identified in the bioactive fractions exhibited immune-stimulatory activity when injected. Hence, we provide evidence that small peptides resulting from thermolysin-mediated digestion of hemolymph proteins function as endogenous danger signals which can set the immune system into alarm. Consequently, our study indicates that the danger model also plays a role in insect immunity. |
format |
article |
author |
Arton Berisha Krishnendu Mukherjee Andreas Vilcinskas Bernhard Spengler Andreas Römpp |
author_facet |
Arton Berisha Krishnendu Mukherjee Andreas Vilcinskas Bernhard Spengler Andreas Römpp |
author_sort |
Arton Berisha |
title |
High-resolution mass spectrometry driven discovery of peptidic danger signals in insect immunity. |
title_short |
High-resolution mass spectrometry driven discovery of peptidic danger signals in insect immunity. |
title_full |
High-resolution mass spectrometry driven discovery of peptidic danger signals in insect immunity. |
title_fullStr |
High-resolution mass spectrometry driven discovery of peptidic danger signals in insect immunity. |
title_full_unstemmed |
High-resolution mass spectrometry driven discovery of peptidic danger signals in insect immunity. |
title_sort |
high-resolution mass spectrometry driven discovery of peptidic danger signals in insect immunity. |
publisher |
Public Library of Science (PLoS) |
publishDate |
2013 |
url |
https://doaj.org/article/f8c872d8bdb54919b082141c2f72e445 |
work_keys_str_mv |
AT artonberisha highresolutionmassspectrometrydrivendiscoveryofpeptidicdangersignalsininsectimmunity AT krishnendumukherjee highresolutionmassspectrometrydrivendiscoveryofpeptidicdangersignalsininsectimmunity AT andreasvilcinskas highresolutionmassspectrometrydrivendiscoveryofpeptidicdangersignalsininsectimmunity AT bernhardspengler highresolutionmassspectrometrydrivendiscoveryofpeptidicdangersignalsininsectimmunity AT andreasrompp highresolutionmassspectrometrydrivendiscoveryofpeptidicdangersignalsininsectimmunity |
_version_ |
1718421420857360384 |